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Abstract—Optical Networks-on-Chip (ONoCs) are becoming
more and more appealing due to rising network requirements in
integrated circuits. One important aspect in ONoC design is the
amount of crosstalk generated by the network because crosstalk
and Signal-to-Noise Ratio (SNR) are strong limiting factors to
network scale and performance. Calculation of crosstalk is thus
essential for effective ONoC design. Motivated by this fact, we
developed a new general linear algebra based method to calculate
the steady-state of any system obeying a simple set of rules.
We prove that ONoCs follow these rules and show how this
general method can be applied in the particular case of ONoCs
to calculate accurate first-order and infinite-order crosstalk and
SNR results for any ONoC network.

Index Terms—Silicon photonics, optical networks, linear alge-
bra, crosstalk.

I. INTRODUCTION

Current Integrated Circuits (ICs) are complex enough that
full networking infrastructures are required to connect their
system-on-chip components [1]. These Networks-on-Chip
(NoCs) have so far been built using electrical connections,
but NoCs are becoming more and more insufficient with the
increase in processing power of ICs [2]. Optical Networks-
on-Chip (ONoCs) have been proposed as a replacement to
traditional electrical NoCs given their higher expected network
performance [3], [4]. ONoCs use optical wires (waveguides)
and light instead of electricity to transmit information.

One key design aspect of ONoCs is crosstalk. Many phys-
ical ONoC elements produce optical noise that disturbs the
detection of the optical signals carrying information. This
effect is worsened as the ONoC designs scale up and more
light wavelengths are required. The Signal-to-Noise Ratio
(SNR) at the optical demodulators of an ONoC must be high
enough for communication to be effective. Thus, calculating
noise levels and SNR for ONoC designs is an essential step
to designing ONoCs with crosstalk in mind [5].

Current methods to calculate crosstalk only consider first-
order noise, that is, noise caused directly by signals. However,
this first-order noise goes on to create second, third and higher
orders of noise as it travels through the ONoC, which worsens
the SNR. They also commonly only use approximate values
for the crosstalk factors [5]–[9]. In this work we present a
linear algebra method based on flow graphs to calculate first-
order and infinite-order incoherent noise levels and SNR val-
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ues for any ONoC design using either approximate or accurate
crosstalk factors. Our method can calculate the total amount
of noise generated or discriminate the results on a signal by
signal basis. Furthermore, the mathematical backbone of this
method can be applied to any system fulfilling a simple set of
rules, not just ONoCs.

This work is organised as follows. Section II introduces pre-
vious publications on ONoC crosstalk calculation. Section III
establishes the mathematical foundation of this work and sec-
tion IV follows with a matrix reduction technique that is useful
to increase this method’s performance. These two sections
stand on their own and their utility extends beyond crosstalk
calculation for ONoCs, so they are presented first. Section V
then describes the working principles of ONoCs, insertion loss
and crosstalk generation. Section VI explains how the princi-
ples from section III are applied to calculate SNR in ONoCs.
Section VII touches on a few practical considerations of this
method, namely how the reduction technique in section IV
increases performance. Finally, section VIII presents results
obtained by this method and section IX concludes this work.

II. RELATED WORK ON ONOC CROSSTALK CALCULATION

Multiple works have tackled the calculation of ONoC
crosstalk [5]–[9]. However, these state of the art methods
calculate only first-order noise (calculating higher orders of
noise is considered to be computationally difficult [8]), operate
only on specific ONoC designs and consider only approximate
(average) versions of the crosstalk coefficients.

The method presented in this work is, to our knowledge, the
first capable of lifting all of these restrictions: it can calculate
both first-order and infinite-order noise for ONoCs, it can do
so for any active or passive ONoC design and it can use
both the approximate (average) and the accurate (wavelength-
dependent) versions of the crosstalk coefficients.

III. STEADY-STATE ANALYSIS OF A FLOW GRAPH

We start by describing a general version of our method.
This general version can be applied to any system composed
of multiple elements that obeys the following rules:

1) Each element holds some amount of a quantifiable prop-
erty of the system. In this work we call this property
energy.

2) Some elements may be sources or sinks of energy.
3) Fixed ratios of energy are transferred between elements

over time.
4) If there are no active source elements inserting energy

into the system, the total amount of energy in the system
decreases to zero over time.
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Under the condition that all sources of energy input a
constant amount of energy per unit of time into the system
forever, the goal is to calculate the distribution of energy over
the system’s elements (the state of the system) after an infinite
amount of time has passed, i.e. its steady-state.

For a system with n elements, consider a weighted directed
graph G = (V,E), abbreviated as flow graph in this work,
with n vertices and edge weights w(e) ∀e ∈ E. The graph
structure can be described by an adjacency matrix A ∈ Rn×n
where:

[A]ij =

{
1 if (i, j) ∈ E
0 otherwise (1)

A transfer matrix T ∈ Rn×n can be created based on the
transpose of the adjacency matrix A and the edge weights
w(e)

[T ]ij = w(j, i) (2)

where we extend the definition of w(e) ∀e ∈ E with w(e) =
0 ∀e /∈ E for simplicity. This matrix fully defines the flow
graph.

We associate each vertex v ∈ V with a state variable xv .
Both the state variables and the edge weights are real and non-
negative. The weights are constant but the state variables are
time-varying so we index them on discrete time steps: xv[k].
Each state variable xv[k] indicates how much energy is flowing
through vertex v at time instant k. The propagation of energy
through each vertex v in the graph can be described by the
following relationship:

xv[k + 1] =
∑
i∈V

w(i, v)xi[k] (3)

In other words, some fraction of the energy currently
flowing at time k through vertices whose outgoing edges end
at v will be propagated at time k + 1 to vertex v, and some
fraction of the energy flowing at time k through vertex v will
be propagated at time k+1 to the vertices where the outgoing
edges of v end at. An example is shown in fig. 1.

Note that the energy in a vertex v is not necessarily
propagated in full to the rest of the system. Define fv =∑
i∈V w(v, i). Vertex v is a lossless vertex if fv = 1, a partial

sink vertex if fv ∈]0, 1[ and a full sink vertex if fv = 0.
If all state variables xv[k] are combined into a state vector

x[k] ∈ Rn, the propagation relationship in eq. (3) can be
written simply as:

x[k + 1] = Tx[k] (4)

That is, the transfer matrix T propagates energy one step
forward in the flow graph.

Some vertices may be energy sources which insert energy
into the system. Define δk as a one-hot column vector:

[δk]i =

{
1 if i = k
0 otherwise (5)

If one source vertex v produces a pulse (i.e. lasting only one
time step) of energy with amount g, the addition of energy into
the system can be expressed in a vector b ∈ Rn with b = gδv .
If the system starts with no energy, i.e. x[k < 0] = 0, and the
pulse is produced at k = 0, then x[0] = b. To calculate the
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Figure 1. Example of how energy is propagated through the flow graph over
one time step, as described by eq. (3).

propagation of energy through the graph we multiply by T ,
resulting in the relationship x[k] = Tx[k − 1] = T kx[0].

Since multiple outgoing edges may exist for each vertex,
energy that starts as a pulse in one vertex v spreads out through
the graph over time. By multiplying by T k we are not calcu-
lating one single propagation path of energy k steps through
the graph, but instead a wavefront of energy propagating in
parallel through all possible k-step paths starting at v in the
graph.

In general, multiple source vertices may produce a pulse on
the same time step. Thus, the complete definition of vector b
is

b =
∑
v∈V

g(v)δv (6)

where g(v) is the amount of energy per pulse released by
vertex v. We have g(v) > 0 for source vertices and g(v) = 0
otherwise.

We now formalise this method’s goal as explained in the
beginning of this section:
• Assume x[k < 0] = 0.
• One or more sources are turned on at k = 0, each

producing a constant amount of energy continuously (i.e.
on each time step) forever. The release of energy into the
system on each time step is defined in eq. (6).

• Calculate x[∞], that is, the steady-state value of the state
vector x.

We can calculate x[∞] step-by-step. We start with x[0] = b.
At k = 1, the energy from k = 0 has been propagated forward
once and a new amount b of energy has been produced by the
sources, resulting in:

x[1] = Tx[0] + b = Tb+ b = (T + I)b (7)

At k = 2, we repeat the process:

x[2] = Tx[1] + b = (T 2 + T + I)b (8)

Clearly, we conclude that:

x[∞] =

( ∞∑
i=0

T i

)
b (9)
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This result is sensible: the steady-state amount of energy in
each vertex is the sum of the contributions of all possible paths
of energy of all lengths (between 0 and ∞ steps) starting at
each active source (the non-zero entries in b).

Calculating x[∞] using an infinite sum of powers is not
reasonable in practice. Fortunately, the well-known closed-
form formula for the geometric series with a real number r

∞∑
i=0

ri =
1

1− r
∀r ∈ R : |r| < 1 (10)

has a matrix analogue
∞∑
i=0

M i = (I −M)−1 ∀M ∈ Rn×n : ρ(M) < 1 (11)

which is true for all square matrices M whose spectral radius
ρ(M) < 1.

Define M̂ as shorthand for I−M for all matrices M . With
the use of theorem 1, the calculation of x[∞] is reduced to
solving a single linear system of equations:

x[∞] =

( ∞∑
i=0

T i

)
b ⇔ x[∞] = (I−T )−1b ⇔ T̂ x[∞] = b

(12)
Note that the convergence of x[∞] does not depend on how
much energy is input into the system, i.e. the amplitude of
b. Convergence is guaranteed just based on b being finite and
constant and ρ(T ) < 1.

Section VI will explain how eq. (12) can be used to calculate
insertion loss and crosstalk on ONoCs.

Theorem 1: The transfer matrix T satisfies the condition
ρ(T ) < 1.

Proof: Let E (x[k]) be the total energy in the system
given a state-vector x[k] at time instant k. Then

E (x[k]) =

n∑
i=1

[x[k]]i =

n∑
i=1

|[x[k]]i| = ‖x[k]‖1 (13)

since all the entries in x are non-negative.
If the system has the state x[k] at time instant k, the total

energy in the system after r time steps is:

E (x[k + r]) = E (T rx[k]) = ‖T rx[k]‖1 (14)

Since the total energy in a system with no active source
vertices must eventually decrease to zero (rule 4 of the
system), there must be a value r ∈ Z+ of propagation steps
where the following is true for all1 state vectors x[k]:

E (x[k + r]) < E (x[k]) ⇔ ‖T rx[k]‖1 < ‖x[k]‖1 (15)

By the definition of induced matrix norm, eq. (15) implies
‖T r‖1 < 1. The following is true for all induced matrix norms:

ρ(T ) 6 ‖T r‖1/r ∀r ∈ Z+ (16)

Therefore we conclude that ρ(T ) < 1.
Corollary 1: The flow graph cannot have lossless cycles.

1Except the zero state vector where, by definition, the total energy is already
zero.

Proof: A more intuitive and verifiable interpretation of
rule 4 of the system is that the flow graph cannot have lossless
cycles.

A lossless vertex is a vertex whose weights of its outgoing
edges sum to 1. All energy held by a lossless vertex is kept in
the system during propagation. A lossless tree is a connected
series of lossless vertices where all energy held by the vertices
in the tree is kept in the system during propagation. A lossless
cycle is a lossless tree that closes back on itself with no energy
losses. Once energy enters any vertex in the cycle, it will never
escape and will stay in the system forever. Most, if not all,
real physical systems have no perfect stores of energy, thus
have no lossless cycles.

Clearly, for rule 4 to be satisfied, lossless cycles cannot
exist. The reverse implication is also true, making rule 4 and
the absence of lossless cycles equivalent statements.

Furthermore, if there are no lossless cycles, then by def-
inition there must be a value r ∈ Z+ of propagation steps
(larger than the length of the longest lossless tree) after which
the total energy in the system has decreased, which also proves
ρ(T ) < 1. The reverse implication is also true.

In conclusion: rule 4, ρ(T ) < 1 and the absence of lossless
cycles are all equivalent statements.

IV. EQUIVALENT REDUCTION OF A FLOW GRAPH

In this section a process is presented that reduces the number
of vertices in the flow graph, and thus reduces the size of
the associated transfer matrix T , while keeping the relevant
steady-state analysis results unchanged.

On any given flow graph, it is possible that some vertices
are not source vertices. Likewise, when calculating the steady-
state vertex values, it is possible that some values are not
relevant as an analysis result. If a vertex is not a source vertex
(so does not contribute to a non-zero value in the b vector) and
is also not a vertex relevant for the result (its corresponding
steady-state energy value in the x vector is not used after),
then it can be eliminated before the T̂ x = b system is solved.

We will now explain how a set of vertices can be removed
from the flow graph without altering any of the relevant results,
and in section VII-B this process will be used specifically in
the context of ONoCs to speed up computation time.

Consider the graph G = (V,E) with n vertices. Define R
as the set of vertices to remove, Q as the set of intermediate
vertices and S = V \(R

⋃
Q) as the rest of the vertices in

V. Intermediate vertices are all vertices not in R that are
connected directly to one or more vertices in R. Sets R, Q
and S are disjoint.

To eliminate the vertices in R from the graph, all edges
connected to vertices in R must be removed. These are edges
internal to R and edges between R and Q. The problem can
be represented in matrix form using the transfer matrix of the
graph. We start with the original matrix T , which we partition
into 9 sub-matrices:

T =

A B 0
C D F
0 H J

 (17)
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We assume, without loss of generality2, that:

• the first set of rows/columns (sub-matrices A,B and
A,C) are the in/out-edges respectively for the vertices
in R,

• the second set of rows/columns (C,D, F and B,D,H)
are the in/out-edges respectively for the vertices in Q,
and

• the last set of rows/columns (H,J and F, J) are the
in/out-edges respectively for the vertices in S.

This is shown graphically in fig. 2(a). Note that the dimensions
of these sub-matrices are defined by the number of vertices in
each set R, Q, S, and vertices in R are not connected to
vertices in S so the two corresponding sub-matrices are filled
with zeros.

By eliminating all edges connected to vertices in R, we get
the new transfer matrix U :

U =

0 0 0
0 K F
0 H J

 (18)

A graphical representation of U is shown in fig. 2(b). Sub-
matrix K must be determined so that transfer matrices T and
U are equivalent for vertices in Q

⋃
S.

The equivalence of two matrices for a set of vertices V ∗ ⊆
V is defined based on eq. (12). Consider xi = T̂i

−1
b. Two

transfer matrices T1 and T2 are equivalent for vertices V ∗ if
any b vector which only contains non-zero values for vertices
in V ∗ results in vectors x1 and x2 with the same values for
all rows corresponding to vertices in V ∗:

T1
V ∗←→ T2

⇔ δTi T̂1
−1

∑
j∈V ∗

g(j)δj

 = δTi T̂2
−1

∑
j∈V ∗

g(j)δj


∀g(j) ∈ R, i ∈ V ∗

⇔ δTi T̂1
−1
g(j)δj = δTi T̂2

−1
g(j)δj

∀g(j) ∈ R, i, j ∈ V ∗

⇔ δTi T̂1
−1
δj = δTi T̂2

−1
δj ∀i, j ∈ V ∗

⇔
[
T̂1
−1]

ij
=
[
T̂2
−1]

ij
∀i, j ∈ V ∗

(19)

To determine K such that matrix U is equivalent to T for
vertices in Q

⋃
S, we must first calculate T̂−1 and Û−1. The

inverse of a 2× 2 block matrix is[
A B
C D

]−1
=[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
(20)

2The order of the vertices in T can be changed at will by re-ordering rows
and columns with T ′ = PTPT , where P is a permutation matrix, and does
not influence any result.

assuming A and D are invertible [10]. We partition matrices T
and U into 4 sub-matrices each along the following boundaries

T =

 A B 0
C D F
0 H J

 U =

 0 0 0
0 K F
0 H J

 (21)

and apply3 eq. (20) to T̂ and Û , resulting in

T̂−1 =

[
[T̂−1]11 [T̂−1]12
[T̂−1]21 [T̂−1]22

]
(22)

Û−1 =

[
I 0

0 [Û−1]22

]
(23)

where:[
T̂−1

]
22

=

(
I −

[
D F
H J

]
−
[
C
0

]
(I −A)−1

[
B 0

])−1
=

(
I −

[
D + C(I −A)−1B F

H J

])−1
(24)[

Û−1
]
22

=

(
I −

[
K F
H J

])−1
(25)

According to eq. (19), if matrices T and U are equivalent
for vertices in Q

⋃
S, then we must have [Û−1]22 = [T̂−1]22.

By comparing eq. (24) with eq. (25) we have clearly:

K = D + C(I −A)−1B (26)

This result is sensible: the flow of energy from Q to R and
back to Q is added to the already existing flow between
vertices in Q.

In the case where R contains only one vertex, matrix B
becomes vector b, matrix C becomes vector c, matrix A
becomes scalar a and:

[K]ij = [D]ij +
[c]i[b]j
1− a

(27)

This simplifies further to [K]ij = [D]ij + [c]i[b]j when the
vertex in R does not have a self-looping edge (a = 0).

In summary, to eliminate a set R of vertices from the flow
graph, start with the associated transfer matrix T , calculate
C(I −A)−1B for the corresponding sub-matrices A,B,C in
T , add the result to the corresponding sub-matrix D and zero
the sub-matrices A,B and C. At this point, the size of the T
matrix can be reduced by eliminating from it all the zero rows
and columns.

V. ONOC DESIGN, ELEMENTS, INSERTION LOSS AND
CROSSTALK

An ONoC uses light instead of electricity to transmit in-
formation between system-on-chip components. Each node of
the network may send and/or receive information. The sender
side of each node emits light signals in multiple wavelengths
that must arrive at the receiving side of the correct nodes.
Each signal has a specific wavelength and travels between a
specific sender/receiver pair. The routing mechanism in the
ONoC router is thus fundamental [11].

3The sub-matrices on the diagonal of the block decompositions of T̂ and
Û are invertible.
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Figure 2. Simplifying a flow graph by removing all edges connected to vertices in the set R. Each set of edges shown is associated with the corresponding
sub-matrix of the transfer matrix T of the flow graph. (a) Before simplification. (b) After simplification.

A. ONoC elements

An ONoC is composed of the following relevant optical
elements: laser sources, modulator arrays, demodulator arrays,
waveguides, Micro-Ring Resonators (MRRs) and waveguide
terminators [12].

Laser sources emit light in multiple wavelengths. This light
is guided by waveguides to the modulator array of each ONoC
node. Each modulator array contains multiple modulators,
one for each wavelength, and each modulates light by an
electrical data signal. This light then travels through the ONoC
router taking the designed path according to its wavelength,
eventually reaching the demodulator, where the electrical data
signal is retrieved.

MRRs are used to achieve wavelength-based routing [13].
These are silicon ring structures that can be tuned to specific
wavelengths. When a signal travels on a waveguide and gets
close to an MRR also adjacent to a second waveguide, some
energy goes through the MRR and continues on the same
waveguide, and some energy is dropped onto the second
waveguide [14]. This effect, shown in fig. 3, works the
same way with both parallel and perpendicular waveguides
so long as both waveguides are close enough to the MRR.
The fractions of energy transmitted to the through and drop
ports depend strongly on both the resonance wavelengths of
the MRR and the wavelength of the signal. This is the key to
wavelength-based routing using MRRs.

An MRR has a set of resonance wavelengths Λres approx-
imately defined by Λres ⊂

{
µ 2πR

i | i ∈ Z+
}

where R is
the MRR’s radius and µ is a physical parameter. Commonly,
the considered band of wavelengths is between 1500 nm and
1600 nm. The fractions of the input energy transmitted to the
through (ft) and drop (fd) ports are functions dependent on
the wavelength λ of the signal. Their simplified shape is shown
in fig. 4 and they are described approximately by

fd(λ) =
k1

(
λres

2Q

)2
(λ− λres)2 +

(
λres

2Q

)2 (28)

ft(λ) =
(λ− λres)2 + k2

(
λres

2Q

)2
(λ− λres)2 +

(
λres

2Q

)2 (29)

where λres is the resonant wavelength in Λres closest to
λ, Q is the MRR’s quality factor and ki are other physical
parameters [15]. We have ki > 0 but k1 + k2 < 1.

Optical waveguides, unlike electrical wires, can cross on the
same plane. These crossings are sources of loss and noise but
do not alter signal paths: a signal traveling on a waveguide
that crosses other waveguides will continue traveling in the
same direction on the original waveguide. Lastly, waveguide
terminators are placed at the ends of waveguides and their
purpose is to absorb as much light as possible to avoid back
reflection.

B. Insertion loss

Waveguides and MRRs are real physical elements, therefore
signals interacting with them always lose a fraction of their
energy. This is called insertion loss. The total insertion loss of
the router determines directly the minimum amount of power
the laser sources must produce so that signals are detected
correctly at the demodulators. Therefore, minimising insertion
loss at design time is key to reducing power consumption.

Insertion loss is commonly reported in dB (logarithmic
scale), but this work requires that it be used as a multiplicative
factor. The relationships in both formats between input energy,
output energy and insertion loss are

outputdB = inputdB − ildB (30)
outputf = inputf × ilf (31)

and the corresponding conversion formula is ildB =
−10 log10(ilf ). Naturally, here we have ildB > 0 and ilf < 1.

There are five types of insertion loss [5]. Waveguides cause
propagation loss (Lp) and bend loss (Lb). Propagation loss in
dB is proportional to the length of the waveguide and bend loss
in dB depends on the radius of the bend. Waveguide crossings
cause a fixed amount of crossing loss in dB (Lc) per crossing.

Lastly, MRRs cause two types of loss: drop loss (Ld) and
through loss (Lt). These are directly related to eq. (28) and
eq. (29). If a signal with wavelength λ arrives at an MRR
where λ is a resonance wavelength, the signal is routed to
the drop port but loses some energy in the process. Thus,
we have drop loss ilf = fd(λ). Conversely, if a signal with
wavelength λ arrives at an MRR where λ is not a resonance
wavelength, the signal is routed to the through port but loses
some energy in the process. Thus, we have through loss
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input

drop

throughinput

drop

through

Figure 3. Routing mechanism of an MRR. A fraction of the energy that
arrives at the input port continues on the same waveguide and is routed to
the through port; another fraction is moved to a second waveguide and routed
to the drop port. This mechanism works with both parallel and perpendicular
waveguides as long as both waveguides are close enough to the MRR.

ilf = ft(λ). Some of the signal energy which is not routed to
the correct port becomes noise, as explained in section V-C.
These through/drop loss factors are very accurate but depend
on both the wavelength of the signal and the radius of the
MRR. Therefore, many works simplify and approximate them
by averaging the through/drop loss factors over all signal
wavelengths and MRR radii used [5]–[8]. Our method can
use both the average and the accurate versions.

C. Crosstalk

Crosstalk broadly refers to the influence of each signal
on other signals [16]. Consider a signal traveling between
two ONoC nodes. A fraction of its energy arrives at the
assigned demodulator, a fraction arrives at other demodulators,
causing crosstalk, and the rest is lost due to insertion loss. Any
signal energy that strays from its intended path becomes noise
because when it inevitably arrives at incorrect demodulators it
interferes with the detection of the signals assigned to them.

There are two types of crosstalk: inter-channel and intra-
channel crosstalk [5]. Inter-channel crosstalk happens when
the wavelength of the noise is distant enough from the
wavelength of the signal. Intra-channel crosstalk happens
when the wavelengths of the signal and noise are the same
or close enough. The distinction is whether the noise can
be effectively filtered out from the signal before detection.
Naturally, this makes intra-channel crosstalk worse than inter-
channel crosstalk.

There are five sources of noise, shown in fig. 5 [5]. A
signal that arrives at a waveguide terminator is never fully
absorbed. Terminator back reflection (Ctbr) is the fraction of
noise energy reflected back onto the waveguide in the reverse
direction. A signal that arrives at a crossing mostly continues
in the same direction on the same waveguide, but a fraction
of the energy escapes through the sides of the crossing as
noise and another fraction is reflected back as noise. These
are, respectively, crossing side spill (Ccss) and crossing back
reflection (Ccbr).

Lastly, MRRs are the sources of two types of noise. If a
signal with wavelength λ arrives at an MRR where λ is a
resonance wavelength, the signal is routed to the drop port but
some energy still escapes to the through port as noise. This is
MRR on-resonance through (Cr1t) noise with Cr1t = ft(λ).
Conversely, if a signal with wavelength λ arrives at an MRR
where λ is not a resonance wavelength, the signal is routed to
the through port but some energy still escapes to the drop port
as noise. This is MRR off-resonance drop (Cr0d) noise with
Cr0d = fd(λ). Like with the insertion loss factors above, both

0

1

Figure 4. Simplified shape of the fractions of the input energy transmitted
to the through (ft) and drop (fd) ports of an MRR depending on the signal
wavelength λ. The resonant wavelengths of the MRR are λresi ∈ Λres and
ki are physical parameters. When the wavelength of light λ is far away from
all λresi , most of the input energy is transmitted to the through port. When
λ is close to a λresi , most of the input energy is transmitted to the drop port.
When λ is equal to a λresi (i.e. λ ∈ Λres), the fractions of input energy
transmitted to the drop and through ports are k1 and k2 respectively.

average and accurate versions of these factors are available
and both can be used in our method.

For each signal received at a demodulator, the noise also
arriving at the demodulator and interfering with the detection
of the signal can be separated into three types: intra-channel
noise caused by the signal itself taking a different path to
arrive at its demodulator, intra-channel noise caused by other
signals of the same wavelength and inter-channel noise caused
by other signals of different wavelengths. SNR is defined as
the ratio between signal and noise power at the demodulator.
Our method can calculate the SNR for each type of noise
separately.

VI. STEADY-STATE CROSSTALK CALCULATION FOR
ONOCS

We now explain how to calculate SNR for any ONoC
design using the method in section III. This is possible
because ONoCs satisfy all four rules: waveguides hold specific
amounts of energy in transit, modulators/demodulators are
sources/sinks of energy, insertion loss and crosstalk factors
transfer fixed fractions of energy between waveguide locations,
and all ONoC elements cause insertion loss so ONoCs cannot
have lossless cycles.

Assume a modulator sends a signal into the router. As
it travels through the router, two types of interactions are
possible: the signal may lose a fraction of its energy due to
insertion loss or the signal may bifurcate due to noise-inducing
elements. Therefore, we identify two types of light streams
traveling through the router and two types of transformations
that can be applied to them. A light stream can either be
signal or noise, and both stream types can suffer insertion loss
and bifurcation. Signal/noise streams contribute to signal/noise
energy levels respectively at the demodulators they arrive at.

When a signal goes through a noise-inducing element, it
bifurcates and a fraction of its energy becomes first-order
noise. This noise stream travels through the router suffering
insertion loss like any other light stream. If it encounters a
noise-inducing element, it bifurcates again and a fraction of
the first-order noise energy becomes second-order noise (no
transformation can be applied to a noise stream that generates
a signal stream back). This process may happen up to an
infinite number of times depending on the design of the
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MRR on-resonance MRR off-resonance

Waveguide terminator Waveguide crossing

Figure 5. Noise sources in ONoCs: terminator back reflection (Ctbr), crossing
side spill (Ccss), crossing back reflection (Ccbr), MRR on-resonance through
(Cr1t) and MRR off-resonance drop (Cr0d). Full arrows are signal paths,
dashed arrows are noise paths.

router. The energy of all {1, 2, ...∞}-order noise streams is
summed together to contribute to the noise energy levels for
the demodulators the streams arrive at.

To model the propagation of light through an ONoC and
calculate all SNR results, first we translate the ONoC into a
corresponding set of flow graphs, then we convert the graphs
into transfer matrices and then we apply the mathematical
method in section III. Since streams go through different paths
and suffer different transformations depending on their wave-
length, a flow graph Gλ must be created for each wavelength
λ used in the ONoC. This results in a different transfer matrix
Tλ per wavelength.

A. Building a flow graph for an ONoC

A three-step process is used to convert an ONoC design
into a flow graph Gλ for a specific wavelength λ: first the
locations of compound vertices on the router are identified,
then each compound vertex is converted into multiple single
vertices and then directed edges between single vertices are
added with the appropriate edge weights.

Compound vertices are placed on waveguides such that, for
all locations where a light stream can suffer insertion loss
and/or bifurcation, there are two adjacent compound vertices,
one just before the transformation and the other just after.
Figure 6(a) shows the locations of compound vertices for
ONoC elements. A compound vertex is placed on each end
of a waveguide, just before a waveguide terminator, on the
four sides of a waveguide crossing and on the four locations
around an MRR. A compound vertex is also placed just after
each modulator and just before each demodulator.

Each compound vertex tracks the amount of signal and
noise energy going through the waveguide on its location.
Since there are two types of streams and streams can travel
in two directions on a waveguide, each compound vertex is
decomposed into four single vertices: signal direction top/left,
signal direction bottom/right, noise direction top/left, noise
direction bottom/right. Figure 6(b) shows examples of this
decomposition. Flow graphs are composed of these single
vertices.

To build a flow graph of an ONoC comprised of multiple
individual ONoC elements, the compound vertices (and, by
extension, the single vertices) of each element are merged with
the ones from its adjacent elements. An example is shown in
fig. 7.

Having listed all the vertices of a flow graph, the final step
is to add edges with the correct weights. Edges describe what
fractions of energy are transferred between vertices, and thus
how light is propagated through the router. Since a light stream
can suffer insertion loss and/or bifurcation between vertices,
the edge weights are of type loss and crosstalk respectively.
Figure 6(b) shows the edges required for each ONoC element.
Edge direction follows intuitively from the light direction
associated with each vertex.

For each MRR, the choice to use the on- or off-resonance
case is based on the path the signal should take according
to the design of the network. The Ld, Lt, Cr0d and Cr1t
weights can also be the average or the accurate versions. The
average weights are the same for all Gλ graphs but the accurate
weights also depend on the wavelength λ of the flow graph
Gλ and the resonance wavelengths of the MRR.

B. Transfer matrix types

We identify four edges types depending on the types of
the vertices they are connected between and the type of their
weight:
• Type SL from a signal (S) vertex to a signal vertex with

a loss (L) weight.
• Type SX from a signal (S) vertex to a noise vertex with

a crosstalk (X) weight.
• Type NL from a noise (N) vertex to a noise vertex with

a loss (L) weight.
• Type NX from a noise (N) vertex to a noise vertex with

a crosstalk (X) weight.
The distinction between these four edge types is crucial to

the method and can be explained in three stages:
1) If we only consider SL edges, then only signals are prop-

agated through the graph. Signal streams suffer insertion
loss before arriving at their respective demodulators, but
no noise streams are generated and thus demodulators
will receive no noise energy.

2) If we consider SL, SX and NL edges then only signal
streams and first-order noise streams are propagated
through the graph. SL edges are responsible for the
propagation of signal streams, SX edges are responsible
for the generation of first-order noise streams from signal
streams and NL edges are responsible for the propagation
of first-order noise streams. Demodulators receive both
signal and first-order noise energy. Therefore, first-order
SNR can be calculated.

3) If NX edges are also considered along with SL, SX and
NL edges, then n-order noise streams generate n + 1-
order noise streams. Noise received by the demodulators
will be the sum of all {1, 2, ...∞}-order noise and the
SNR values calculated will be all-order SNR.

These three stages result in three possible Tλ transfer matrix
types for each Gλ flow graph: TSλ containing only SL edges,
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Figure 6. (a) Location of compound vertices for ONoC elements. For the MRR on/off-resonance case, the two possible waveguide placement configurations
around an MRR are shown. Both configurations have 4 compound vertices A,B,C,D. Although they are placed in different locations relative to the MRR, they
work exactly in the same way when converting to a flow graph. (b) The decomposition of the compound vertices into single (signal and noise) vertices and
the edges connecting them. The loss/crosstalk weight used in each edge is also shown. In the waveguide case, the weights are propagation loss (Lp) and/or
bending loss (Lb) depending on the path of the waveguide. For simplicity and clarity, in the waveguide crossing and MRR cases only the edges leaving
vertices in the compound vertex A are shown. The edges leaving compound vertices B, C and D are analogous and thus not drawn.

TSN1

λ containing SL, SX and NL edges, and TSN∞λ containing
all edges. All these matrices have the same size because the
number of vertices in the graph doesn’t change4 but the fewer
edge types considered, the sparser the matrix is.

Depending on the choice of Tλ matrix type and on how the
b vector is constructed, different kinds of information can be
obtained from solving T̂λx = b. Matrix TSλ can only be used
to calculate insertion loss for signals whereas matrices TSN∗λ

(where ∗ is 1 or∞) can also be used to calculate noise energy
levels and SNR values at the demodulators.

C. Calculating signal insertion loss
Assume a signal is sent on wavelength λ. Let i be the

vertex where the signal’s modulator sends signal energy into
the router and j be the vertex where the signal’s demodulator
receives signal energy from the router.

4There is an exception to this statement that will be explained in sec-
tion VII-B.

To calculate this signal’s total insertion loss, first solve
T̂ ∗λx = b for vector x where ∗ is any of the three matrix
types and b = 1δi. Then, the insertion loss on this signal’s
path through the router from vertex i to vertex j (ili→j) is
the logarithm of the ratio of signal energy sent into the router
([x]i) to signal energy received from the router ([x]j):

ili→j = 10 log10

(
[x]i
[x]j

)
= 10 log10

(
1

[x]j

)
= −10 log10 ([x]j) (32)

This reasoning can be extended to multiple signals at once
as long as their wavelengths are the same and their paths do
not interfere, i.e. do not contain the same waveguides. Just use
eq. (6) with g(v) = 1 ∀v ∈ V ∗ where V ∗ is the set of vertices
of the corresponding modulators sending signal energy into the
router. Then solve T̂ ∗λx = b once and apply eq. (32) for each
signal. This reduces the computational burden of calculating
the insertion loss of all signals.
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Figure 7. Example of how the compound vertices of isolated elements shown
in fig. 6(a) are merged to form a flow graph of an ONoC. In this case, the four
compound vertices of two MRRs each and the four compound vertices of a
waveguide crossing are combined into a total of seven compound vertices.

D. Calculating noise at demodulators

Assume a signal is sent on wavelength λ. Let i be the vertex
where the signal’s modulator sends signal energy into the
router, j be the vertex where the signal’s demodulator receives
signal energy from the router and vk be all the vertices where
the demodulators receive noise energy from the router.

To calculate the noise caused by this signal on all demod-
ulators, solve T̂SN∗λ x = b where ∗ is the chosen noise type
and b = gδi where g is the signal’s energy at the modulator.
The signal’s energy at the demodulator is given by [x]j and
the noise energies at the demodulators are given by [x]vk .

By solving one system per signal, the noise caused by each
signal on each demodulator can be calculated separately. Intra-
channel noise caused by the signal itself, intra-channel noise
caused by other signals and inter-channel noise can all be cal-
culated separately in this way. However, like in section VI-C,
the computational burden can be reduced by combining signals
with the same wavelength and non-interfering paths into the
same b vector. In this case, values [x]vk contain the total
amount of noise generated by all the selected signals and
received by each demodulator.

E. Calculating SNR at demodulators

To obtain all SNR values, first calculate the insertion loss
of all signals using section VI-C and from the insertion
loss determine the required energy of each signal at the
modulator5. Then, calculate the signal and noise energies at
the demodulators using section VI-D and from there derive
the SNR values. To reduce the computational burden, multiple
signals with the same wavelength and non-interfering paths
can be combined into the same b vector in which case only
the sum of the generated noise is obtained instead of individual
noise energy levels.

VII. PRACTICAL CONSIDERATIONS

There are multiple practical aspects to take into considera-
tion when solving T̂ x = b that can make this method faster
and more memory efficient. These will be discussed now.

A. Sparse matrix methods

The average transfer matrix density (ratio of non-zero en-
tries to total entries in the matrix) is very low and approaches

5In case the energy levels of the signals are already available, this step can
be skipped.

(b)

(c) (d)

Compound
vertex

GRU

Legend:

(a)

Figure 8. (a) Example GRU configurations. (b) Location of the eight
compound vertices on a GRU: four internal vertices (in red) and four port
vertices (in blue). (c) Removing internal vertices. (d) Merging port vertices.
Final result has up to 4× lower vertex count for GRU-based designs.

zero as the number of vertices in the flow graph increases.
The use of sparse matrices and sparse matrix methods is thus
essential to storing T efficiently and solving T̂ x = b quickly.

Methods for solving linear systems can be divided into two
types: direct and iterative. Direct methods guarantee a full
precision solution in a finite number of steps. Conversely,
iterative methods start from an initial guess and converge
(some methods, asymptotically) to the solution with each
iteration. Because of their iterative nature, iterative methods
can trade accuracy for speed by stopping earlier when a good
enough solution is achieved.

Direct methods for sparse linear systems include sparse
versions of Cholesky, LU and QR factorisations. To avoid
fill-in during factorisation, multiple strategies exist. One such
strategy is ordering vertices in the matrix to reduce its band-
width, which can be applied here very easily. We have found
that LU factorisation with Cuthill-McKee vertex ordering
works well.

Iterative methods for sparse linear systems include Con-
jugated Gradient (CG) methods, the Generalized Minimal
Residual method (GMRES) and the Biconjugate Gradient
Stabilized method (BiCGSTAB). Iterative methods may also
benefit greatly from using a preconditioning matrix. We have
found that BiCGSTAB with an incomplete LU preconditioner
works very well.

B. Transfer matrix reduction techniques

Any process by which a transfer matrix’s size is reduced or
its sparsity is increased without affecting the result can have
the potential to save memory and speed up the matrix method.

A vertex whose corresponding row and column of the
transfer matrix are empty, i.e. filled with zeros, is a vertex
without any ingoing or outgoing edges. These vertices can be
eliminated from the flow graph and transfer matrix without
consequence. Because of this, since noise vertices in TS are
not used, TS can actually be half the width and height of the
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TSN∗ matrices. Likewise, when the process from section IV
is used, the resulting empty rows/columns in sub-matrices
A,B,C can be removed. However, good sparse matrix method
implementations should be able to handle empty rows/columns
with little to no overhead, dismissing the requirement to
remove them from the matrix once they’re emptied.

Many ONoC routers are built from multiple copies of one
basic, configurable, routing structure. These structures are self-
contained collections of ONoC elements that perform simple
routing tasks between a fixed number of ports (commonly four
or five). They are copied multiple times and interconnected
through a specific topology to form an ONoC router for as
many network nodes as required. Each structure is configured
internally so that all structures work together to accomplish
the routing requirements of the full ONoC router. For example,
active ONoCs can be built from the Crux [17], Cygnus [18]
or OTAR [19] structures interconnected through mesh, fat-tree
or folded torus topologies [5]. Passive ONoCs (wavelength-
routed ONoCs) can be built using Photonic Switching El-
ements (PSEs) [20] or a grid of Generic Routing Units
(GRUs) [21]. Crucially, for each of these routing structures,
there is a relatively small finite amount of possible internal
configurations. Because of this, it is possible to list these
configurations and use the process from section IV to reduce
the transfer matrices of each configuration substantially. This
reduction process only has to be done once because all the
simplified transfer matrices can be saved in a library. Then,
when calculating results for an ONoC design (which uses a
specific combination of routing structure configurations) its
transfer matrix can be built directly by combining the simpli-
fied transfer matrices from the library. When solving multiple
T̂ x = b systems for different ONoC designs based on the
same structure library, the repeated effort caused by indirectly
solving multiple copies of the same structure configurations is
eliminated.

Here we use a passive ONoC built using GRUs as an
example. A GRU is a configurable waveguide crossing with
four external ports. It can have a waveguide crossing, up to
four MRRs and/or up to two waveguide bends. GRUs are
interconnected in a grid topology.

GRUs have a total of 73 possible internal configurations6

of crossing, MRR and bend placements. Some examples
are shown in fig. 8(a). According to section VI-A, a GRU
requires eight compound vertices to fully describe its routing
behaviour: four internal vertices and four port vertices. Thus,
a naı̈ve flow graph for a grid of GRUs requires 8 compound
vertices per GRU. This is shown in fig. 8(b).

Since the routing structures are self-contained, reusable and
finite in number, a library of their simplified versions can be
built a priori. The process from section IV is used to remove
all internal vertices of each structure. For a GRU-based design,
this results in a flow graph with only 4 compound vertices per
GRU, i.e. a 2× reduction in vertex count. This is shown in
fig. 8(c).

A further optimisation is possible when connecting the
structures together: instead of having a compound vertex per

6Including rotations and reflections.

TABLE I
INSERTION LOSS AND CROSSTALK

TECHNOLOGY PARAMETER VALUES FROM [5].

Insertion loss
Propagation loss 0.274 dB/cm

Bend loss 0.005 dB/90°
Crossing loss 0.05 dB

Drop loss 1 dB
Through loss 0.005 dB

Crosstalk
Terminator back reflection 50 dB

Crossing side spill 40 dB
Crossing back reflection —

MRR on-resonance through 25 dB
MRR off-resonance drop 20 dB

port for each structure, have a compound vertex per pair of
connected ports. The insertion loss of the waveguide section
connecting the two ports is shared between both structures. In
the 2 × 2 GRU grid example of fig. 8, merging port vertices
brings the total number of compound vertices down to 12,
as shown in fig. 8(d). This is a reduction of 16

12 = 1.33×
compared to fig. 8(c), for a total reduction of 2∗1.33 = 2.66×
compared to fig. 8(b). Note that compound vertices on the
boundaries of the GRU grid cannot be merged. As the GRU
grid size n increases, the number of vertices that cannot be
merged increases with O(n), but the number of vertices that
can be merged increases with O(n2). Thus, this provides an
asymptotical vertex count reduction of 2×, for a total reduction
that approaches 2 ∗ 2 = 4×.

More complex structures lead to larger matrix reductions.
For example, a Crux router [5] used in an active ONoC
has only 780 possible configurations regardless of wavelength
count. By analysis of the Crux router’s design together with
the vertex placement rules described in section VI-A, we
can determine that each structure requires 24n + 34 internal
compound vertices and 10 port compound vertices, where n is
the number of wavelengths. Since we can remove all internal
vertices and merge most port vertices, this process leads to a
reduction in vertex count of up to 24n+34+10

10 × 2, which is at
least 13.6× for n = 1 and already 56.8× for n = 10.

VIII. EXPERIMENTAL RESULTS

We implemented this method in C++ and made use of
Eigen [22], a C++ linear algebra library with sparse matrix
solvers. To exemplify the use of this method, we calculated the
SNR results for the 16 node passive ONoC design in [12]. This
design uses 17 wavelengths to provide connectivity between
16 network nodes with a total of 16 × 15 = 240 signals7.
The design of this ONoC allows all signals to travel without
contention, meaning that all 240 sender/receiver connections
can be in use at the same time. Naturally, this causes the
highest amount of crosstalk in the router and is the case
considered in the following results analysis. For this analysis
we used the technology parameters from [5] shown in table I.

7The network does not have communication paths from a node to itself.
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Figure 9. Histogram of SNR results for all 240 signals of a 17 wavelength passive ONoC router.

We followed the process in section VI-E. First we solved 17
linear systems (one per wavelength) to calculate the insertion
loss of all 240 signals. Each signal is sent into the network
with the minimum amount of energy required to overcome
its insertion loss considering a demodulator sensitivity of
−20 dBm [23]. We then solved 17 linear systems again to
calculate the signal and noise energy levels in the network.
To compare between first-order and infinite-order SNR we
solved the second batch of 17 linear systems twice: once
with TSN1

λ matrices and once with TSN∞λ matrices. We used
BiCGSTAB with an incomplete LU preconditioner to solve all
linear systems.

From the resulting steady-state vectors we can obtain the
noise energy level that each signal’s demodulator receives on
each wavelength. The noise received on the signal’s wave-
length is intra-channel noise and the sum of the noise received
on other wavelengths is inter-channel noise. A histogram of
the SNR results for all signals is shown in fig. 9.

It is clear that in this design SNR is limited mostly by the
intra-channel noise. While inter-channel noise energy levels
are higher (there are more signals on more wavelengths com-
pared to intra-channel noise), this noise is filtered just before
arriving at the demodulator. The average (over all signals)
infinite-order SNR with just inter-channel noise is 18.08 dB,
with just intra-channel noise is 10.12 dB and with all noise
is 9.47 dB. The effect of inter-channel noise becomes more
pronounced as the number of used wavelengths increases.

On average, infinite-order SNR with all noise is only
0.65 dB lower than first-order SNR with all noise. However,
nine signals do not receive any first-order noise, making their
first-order SNR infinite, while in fact the average infinite-order
SNR with all noise for these signals is 27.06 dB. Furthermore,
even for signals whose first-order SNR is not infinite, the max-
imum difference between first-order SNR and infinite-order

SNR (with all noise) is as high as 40.38− 24.23 = 16.15 dB.
We conclude that, while for most signals the infinite order and
first order results are close, some outliers can only be correctly
characterised using infinite-order noise calculations. Infinite-
order calculations are thus necessary for a full and accurate
analysis of an ONoC.

Noise-enabled (TSN∗λ ) transfer matrices obtained directly
from the process in section VI-E have a size of 5408× 5408.
Each first-order noise and infinite-order noise linear system is
solved on average in 658 µs and 2232 µs respectively8. Using
the matrix reduction techniques from section VII-B, the matrix
size becomes 1376 × 1376 and each system is solved on
average in 123 µs and 332 µs respectively. This is a 3.93×
reduction in matrix size (approximately 4× as expected from
GRU based designs) and a 5.35× and 6.72× increase in speed
respectively.

A. Steady-state flow map

The steady-state result vector x can be used for more
than just calculate SNR results. In general, it contains the
steady-state energy levels for all vertices in the flow graph.
All this information can be superimposed on the flow graph
itself to create useful visualisations. For example, in the case
of ONoCs, it can convey graphically the steady-state optical
energy distribution on a per signal basis, per wavelength basis,
or in total. An example is shown in fig. 10. Furthermore, by
using the flow propagation relationships in eqs. (7) and (8),
flow animations can also be produced frame by frame. This
provides ONoC designers with powerful analysis capabilities
in a very hands-on approach, such as discerning whether the
ONoC contains any optical energy hotspots, understanding

8Using a 2.3 GHz 8-Core Intel Core i9 on a single thread.
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Figure 10. Breakdown of noise generation and propagation in a router using a steady-state flow map. (a) Complete router design. The modulators and
demodulators of the 16 nodes are connected to the sides of the router. Circles are MRRs and color indicates their resonance wavelength. (b) Signal paths of
one specific wavelength. (c) Distribution of infinite-order noise on the router waveguides caused by the signals in (b). Stronger red indicates a higher noise
level. (d-e) Noise levels in (c) discriminated by direction. (f-h) Same as (c-e) but for one signal only.

which ONoC elements are most responsible for noise genera-
tion, exploring how noise flows through the ONoC and from

there deriving the best locations for design modifications (for
example, adding extra MRRs and waveguide terminators to
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filter noise on certain wavelengths).

IX. CONCLUSION

In this work we described a new general method to analyse
the steady-state of a system. This method can be applied to
any system obeying a few simple rules, namely not having
any perfect stores of energy. The steady-state is obtained
by solving T̂ x = b with a transfer matrix obtained from
the system’s flow graph. We also derived a process through
which the flow graph and transfer matrix can be reduced in
complexity without affecting the steady-state results.

We applied this method to the calculation of first-order and
infinite-order noise and SNR of any ONoC design. Our method
is quick and efficient through the use of sparse matrices and
methods for sparse linear systems and accurate by supporting
the wavelength-dependent versions of the insertion loss and
crosstalk factors. It also allows for powerful analysis and
visualisation capabilities.

In the future, we intend to research potential design opti-
misation capabilities that a method based on linear algebra
affords. Most importantly, using iterative methods for linear
systems to trade off accuracy for speed inside an optimisation
loop, providing iterative methods with starting solutions from
previous optimisation loops to further speed up computation,
and performing sensitivity analysis on the linear systems to
better direct the iterative improvements made by the optimi-
sation processes.
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