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Abstract—The complexity of modern and upcoming computing
architectures poses severe challenges for code developers and
application specialists, and forces them to expose the highest
possible degree of parallelism, in order to make the best use
of the available hardware. The Intel R© Xeon PhiTM of second
generation (code-named Knights Landing, henceforth KNL) is
the latest many-core system, which implements several interesting
hardware features like for example a large number of cores
per node (up to 72), the 512 bits-wide vector registers and
the high-bandwidth memory. The unique features of KNL make
this platform a powerful testbed for modern HPC applications.
The performance of codes on KNL is therefore a useful proxy
of their readiness for future architectures. In this work we
describe the lessons learnt during the optimisation of the widely
used codes for computational astrophysics P-GADGET3, FLASH
and ECHO. Moreover, we present results for the visualisation
and analysis tools VISIT and yt. These examples show that
modern architectures benefit from code optimisation at different
levels, even more than traditional multi-core systems. However,
the level of modernisation of typical community codes still
needs improvements, for them to fully utilise resources of novel
architectures.

Index Terms—Performance optimization, Intel Xeon Phi, KNL,
Astrophysics, Visualization

I. INTRODUCTION

In order to keep pace with Moore’s law, modern computing
architectures are steadily growing in complexity. As a conse-
quence, an increasing responsibility is imposed on developers
and users of HPC applications: only exposing a high degree
of parallelism one can exploit the available features offered
by the hardware. More specific examples of this statement are
the growing number of CPU nodes in high-end HPC systems,
the number of cores in a node, the large vector registers of the
cores, the memory hierarchy which requires streaming access
to data for optimal performance. Moreover, accelerated HPC
systems pose the additional requirement of offloading the most
computationally-intensive parts to their GPUs or accelerators,
which always involves the users’ attention or active work.

Computational astrophysics is a research field where tradi-
tionally an extensive use of HPC resources is made. Although

its vibrant scientific community has been constantly striving
for the successful use of large-scale HPC facilities, also
exploiting synergies with fields like Big Data and AI, the
experience suggests that most of typical astrophysical appli-
cations consist of legacy code. For them, getting performance
on current computing architectures can become problematic.

The optimization of simulation code, or the ab initio de-
velopment of modern applications have arisen to be an urgent
task in the scientific community [1], [2], [3], [4], [5], [6],
[7]. An underlying and often implicit point in this process is
the identification of a target computing architecture for the
optimization. In general, optimizations can be very machine-
specific, like for instance the use of intrinsic instructions to get
the most effective vectorization on a given architecture. On
the other hand, other techniques aiming at merely exposing
parallelism are more general and ensure portability of the
resulting code.

A key requirement for a target architecture for optimization
is to present hardware features that are interesting for the
developer, either due to their being innovative, or because
they are part of a trend which is going to stay for future
products. With this in mind, in this work we want to consider
the Intel R© Xeon PhiTM of second generation, code-named
Knights Landing (henceforth KNL). This many-core processor
implements a number of interesting solutions (a more detailed
overview will be given in Section II), potentially able of
delivering performance for modern codes, if a high degree of
parallelism at all levels and a cache-friendly access to memory
is provided. Although the KNL product line has been recently
discontinued [8] by Intel, we claim that its unique combination
of hardware features still has a definite relevance for perfor-
mance optimization on current and upcoming architectures.

In this work we present the performance profiling on KNL
of some broadly used software for astrophysical simulation
and visualization. More specifically, three code for astrophys-
ical fluid mechanics (P-GADGET3, FLASH and ECHO) and
two applications for data analysis and visualization (VISIT and



yt) are part of our study. Although this list of applications
covers only a small part of the use cases in computational
astrophysics, our sample is however representative of codes
with different levels of optimization, and can provide insights
on the readiness of astrophysical code for future, pre-Exascale
systems. Our intention is not to cross-compare the work done
on the single codes and their performance, but rather to
illustrate the properties of KNL through a number of real-
life experiences based on the chosen applications. As different
codes have different strengths and weaknesses, we used quite a
varied pool of evaluation tests, or Key Performance Indicators
(KPIs); in Table I we show an exhaustive summary of those
used for the different codes. This process also tells much about
the applications themselves, while helping to understand which
architectural features, among the ones in KNL, are more useful
for performance and necessary on future systems.

The paper is structured as follows: in Section II we describe
the main features of the KNL architecture and of the cluster
where most of the presented tests are performed. In Sections
III to VII we present the tools used in this work, describing
in particular their level of optimization, and discuss their
performance results on KNL. Our conclusions are drawn in
Section VIII.

II. SYSTEM AND SOFTWARE STACK

A. KNL overview and investigated features
The Intel Xeon Phi of second generation (KNL) is a many-

core processor designed for use in HPC systems. In the
following we summarize its main features and innovations; we
focus on model 7210F, i.e. the one used for all our test runs
(see Sections below), when not otherwise specified. We refer
the reader elsewhere (e.g. [9]) for a more detailed hardware
description.
• The KNL can support a high degree of data parallelism,

because it has got up to 72 cores (64 in the 7210F), many
more than Intel Xeon R© processors of comparable launch
time (for example, the ones of forth generation, code-
named Broadwell, BDW), but with a low clock frequency
(1.3 GHz).

• The KNL cores allow simultaneous multithreading
(SMT) up to four threads per physical core, although in
our experience using more than two brings seldom any
performance benefit.

• The cores feature 512-bits-wide vector registers, as in the
much newer Intel R© Xeon R© Scalable Processor (code-
named Skylake, SKX) and twice the size of those on
BDW. The use of such registers is supported by the
Intel R© AVX-512 instruction set [10]. This feature is often
also referred to as SIMD (Single Instruction, Multiple
Data).

• The KNL node has on-package high-bandwidth memory,
based on the multi-channel dynamic random access mem-
ory (MCDRAM). On model 7210F, 16 GB of MCDRAM
with bandwidth 460 GB/s are available, a performance
more than 5× better than the system DDR4 RAM (larger,
96 GB, but with bandwidth 80.8 GB/s; [11]).

• These two memory components can be arranged in two
different configurations, known as memory modes and
selected at boot time: the MCDRAM can be used as last-
level cache (cache mode), or the two can be exposed as
separately addressable spaces (flat mode; [11]).

• The data locality in the access to cache is not trivial
in a system with lots of cores. To ensure the lowest
possible latency and the highest bandwidth, the KNL can
be booted in so-called clustering modes, which determine
the access path to memory controllers. We refer the reader
to [12] on this topic; in the practical use, the quadrant
mode has emerged as the most widely used, while other
clustering modes are profitable only for small groups of
highly tuned applications.

The most peculiar aspect is that the per core computational
power of the KNL is inferior to the traditional multi-core
architectures (Xeon), in favour of a more exposed parallelism
at all levels; a clear design choice of this product line, which
later on has been partly reflected in some of the features of
the Xeon Scalable Processor.

B. Computing system and software environment

A list of all the machines and environments used in the
paper is provided for quick reference in Table II.

Unless otherwise specified, we run on the CoolMUC-3
cluster1 (see Table II) at the Leibniz Supercomputing Centre of
the Bavarian Academy of Science and Humanities (LRZ). The
system consists of 148 Intel Xeon Phi 7210F nodes, connected
to each other via an Intel R© Omni-Path high performance
network in fat tree topology. Concerning software, from Intel
Parallel Studio XE 2018 we used the Fortran and C compilers.
Part of the analysis makes use of Intel R© Advisor 2019.
Description and links for all other systems are provided in
the text when needed.

III. P-GADGET3

GADGET [13] is a cosmological, fully hybrid parallelized
(MPI plus OpenMP) TreePM, Smoothed Particle Hydrody-
namics (SPH) code. In this scheme, both gas and dark matter
are discretized by means of particles. Additional physics
modules use different sub-resolution models, to properly treat
processes which are far below the resolution limit in galaxy
simulations. Our work is performed on a code version dubbed
as P-GADGET3 [14], based on the latest public release
GADGET-2 [13]2.

Some of the core parts of the code recently underwent
a modernization, as reported by [6]. In that work, a rep-
resentative code kernel has been optimized by focusing on
OpenMP concurrency, data layout and vectorization, resulting
in a speedup up to 19.1× on a KNL with respect to the
unoptimized baseline code.

P-GADGET3 has been successfully run at machine scale on
large HPC systems, up to about 300 000 cores and O(104)

1https://doku.lrz.de/display/PUBLIC/CoolMUC-3
2http://wwwmpa.mpa-garching.mpg.de/gadget/

https://doku.lrz.de/display/PUBLIC/CoolMUC-3
http://wwwmpa.mpa-garching.mpg.de/gadget/ 


TABLE I
ALL KEY PERFORMANCE INDICATORS (KPIS) PRESENTED FOR THE CONSIDERED CODES. UNSATISFACTORY (-), IRRELEVANT (0), SATISFACTORY (+)
AND VERY SATISFACTORY (++) RESULTS ARE INDICATED, TOGETHER WITH RELEVANT COMMENTS. FOR YT , AS BASELINE/OPTIMIZED VERSIONS WE

MEAN ANACONDA/INTEL PYTHON (SEE TEXT).

Code \ KPI
Speedup
versus

baseline

Shared-
memory

parallelism

Speedup
from
SMT

Energy
measure

Node-level
scaling

Large-scale
scaling

Speedup
from

SIMD

MCDRAM
flat mode

Comparison
with Xeon

Best HPC
method or

strategy
P-GADGET3 + + + 0

FLASH ++ pure MPI + + unfeasible -
ECHO + tested OpenMP - + - , roofline 0
VISIT pure MPI + + + no control unfeasible Kernel-based
yt ++ - - + no control 0 + Cython

TABLE II
LIST OF ALL ENVIRONMENTS AND MACHINES USED, IN ORDER OF INTRODUCTION IN THE TEXT. UNLESS OTHERWISE SPECIFIED, WE REFER TO
ENVIRONMENT OF COOLMUC-3. THE KNL ARCHITECTURES ARE USED FOR OUR ACTUAL MEASUREMENTS, THE OTHERS FOR PERFOMANCE

COMPARISON.

Machine Architecture Model Owner Physical cores Threads per Purpose
(codename, TLA) per node core (max)

CoolMUC-3 Knights Landing, KNL 7210F LRZ 64 4 Main platform
PCP cluster Knights Landing, KNL 7250 CINES 68 4 Energy measurements

SuperMUC Phase 2 Haswell, HSW E5-2697 v3 LRZ 28 2 Performance comparison
SuperMUC-NG Skylake, SKX 8174 LRZ 48 2 Performance comparison

MPI tasks. Nonetheless the profiling of its shared memory
parallelization showed serious bottlenecks [6]. This perfor-
mance problem has been solved in an isolated code kernel,
but as of today the proposed solution has not been backported
to the main code. From this viewpoint, P-GADGET3 is a
typical simulation code, widely used in the community, with a
relatively efficient MPI scaling, although little effort was spent
in the direction of node-level performance.

The focus of our work on P-GADGET3 is twofold. First, we
present an initial backporting on the full code of the solutions
developed for the kernel in [6], with a verification of that
performance improvement (Section III-A). Secondly, we show
a performance tuning of the energy to solution for a multi-node
workload, based on the exploration of the parameter space
at runtime (ratio of the number of MPI tasks and OpenMP
threads per node; Section III-B).

A. P-GADGET3: Backporting and performance verification

The work described in this section is a follow-up of the
one described in [6]. That paper focused on a representative
kernel isolated from P-GADGET3, on which a number of code
improvements brought to a performance gain on both the target
architecture of that study (the Intel Xeon Phi coprocessor
of first generation, code-named Knights Corner) and newer
systems including KNL. Here we show that the performance
gain obtained on the isolated kernel can be reproduced when
said code improvements are backported into P-GADGET3.

Some context of the backporting development is necessary:

• among all optimizations introduced by [6], the back-
porting is limited to the one concerning the threading
parallelism, which removed most of the lock contention
in the OpenMP part of the kernel;

• for simplicity, the backporting is limited only to the
subfind_density kernel in P-GADGET3, where the
isolated kernel was extracted from.

• the isolated kernel was OpenMP-only, whereas in the
backporting the OpenMP improvements were interfaced
with the MPI section of the full code.

In order to ensure a consistent comparison, we tested the new
full code on the same workload used for the isolated kernel: a
cosmological simulation evolving 2×643 particles for a small
number of timesteps.

The code has been run on a single KNL node using 64
cores in quadrant/flat configuration, with memory allocation
on DDR, although unfortunately the code does not benefit
from any specific cluster or memory mode. For our com-
parison we used four MPI tasks, with 16 OpenMP threads
each, a configuration we know as balanced and efficient
from our previous work on KNL. The thread affinity has
been set by the variables OMP_PROC_BIND="spread" and
OMP_PLACES="cores".

For the performance comparison we measure the timings of
three different code versions. The first one, dubbed original,
consists of the baseline code in a out-of-the-box system
environment with default machine configuration (Intel C++
Compiler 16.0, at the time of the tests) and no KNL-specific
compilation flags. The second version, named tuned, has the
same source code as original but implements a number of
tuning solutions which do not require code modifications,
namely the use of more modern compilers (Intel C++ Com-
piler 18.0) and of the compilation flag -xMIC-AVX512 to
target the highest vectorization ISA available on KNL. This
category of tuning includes also an exploration of cluster and
memory nodes but, as already mentioned, the code does not
benefit from a specific combination. The third code version,



named optimized, is developed on top of tuned and also
includes the improvements in the threading parallelism in
subfind_density, described in [6].

The performance results of our tests on these three code
versions for P-GADGET3 are summarized in Table III. In the
tuned version the time to solution is improved by a factor
of 1.2 − 1.3. The effect of the optimization (third line in
Table III) adds no further speedup to the total timing of the
code, because the optimized function subfind_density
takes a small fraction of the whole workload. However, this
part of the code shows a speedup of 1.8× in the version
optimized with respect to original. This is larger than the factor
1.4× we measured in the tests on the isolated kernel. The
reason for it is that by decreasing the OpenMP thread spinning
time, also the MPI imbalance is reduced, thus producing an
additional positive effect on performance. The backporting
of the threading optimization into P-GADGET3 exceeds the
expected performance target and is therefore successful.

It is also interesting to compare the performance values on
KNL with those measured on SuperMUC Phase 23 on a single
node ( Intel Xeon E5-2697 v3, code-named Haswell, hereafter
HSW; see Table II). While the original version runs 1.7×
slower (total time) on KNL, the optimized version is just 1.3×
slower, numbers that decrease to 1.5× (original) and 1.16×
(optimized) for the subfind_density kernel by itself.
Many-core nodes profit from code optimization better than
multi-core Xeon systems, up to the point that on optimized
applications the performance gap between the two processor
families tends to vanish.

B. P-GADGET3: Performance tuning and energy optimization

It is well known that energy consumption and energy effi-
ciency are primary concerns, as HPC systems evolve towards
Exascale. While at runtime there are already solutions for
optimizing the energy consumption of a job, like for example
the energy-aware scheduling on SuperMUC Phase 2 at LRZ
(Table II; see also [15] and the recent [16]), it is also important
to understand how the energy footprint of an application
evolves while it is optimized. This question is especially
interesting on KNL, because its energy efficiency has been
claimed to be among its points of strength.

In this section we present the energy measurements done
on P-GADGET3 during some steps of performance tuning,
i.e. performance improvements not requiring modifications of
the source code. The work has been done on the optimized
version of P-GADGET3 (Section III-A), on a larger test case
consisting on the evolution of a cosmological simulation of
2× 2563 particles, suitable for multi-node runs on KNL.

We took our measurements on the pre-commercial procure-
ment Bull Sequana X1000 KNL cluster at CINES4, consisting
of 168 Intel Xeon Phi 7250 nodes with 68 cores each @ 1.4
GHz. This system has been designed with a strong focus on
energy efficiency. All nodes are in quadrant/flat configuration.

3https://www.lrz.de/services/compute/supermuc/
4https://www.cines.fr/en/

Fig. 1. Performance results (time to solution against energy to solution) for
the multi-node energy measurements on P-GADGET3. The points are labelled
with the number of KNL nodes used for the respective runs; further indications
are provided in the main text.

On the system the Intel C++ compiler 17.0 was available. For
the measurements we used the Bull Energy Optimizer (BEO)
v. 1.0, a non intrusive energy profiler.

When plotting time to solution against energy to solution as
in Figure 1, optimizing an application is equivalent to move
the point on the plot towards the lower left corner. The strong
scaling of a code with ideal scaling should result in a vertical
line descending the plot as the number of nodes increases.
Otherwise, in the simplest case, one can assume that the energy
footprint E2N of a job that is run on 2N nodes follows

E2N = EN ×
1

PN→2N
(1)

where EN is the energy consumption on N nodes and
PN→2N ∈ [0; 1] is the parallel efficiency going from N to
2N nodes. One can verify that the blue squares in Figure 1
follow Equation 1. For simplicity, we run a configuration of 4
MPI tasks per node and 16 OpenMP threads per task, leaving
idle four cores per node. The red cross in Figure 1, labelled as
KNL 8 nodes 2HT refers to a test with 8 KNL nodes and SMT
with 2 threads per core (i.e. twice as many OpenMP threads
per task as in the standard runs). The comparison with the run
on 8 KNL in the standard configuration (central blue square
in Figure 1) shows that hyperthreading is not a viable solution
for optimizing the energy consumption for this workload.

The yellow diamond in Figure 1, labelled as KNL 8 nodes
best is the outcome of a performance tuning. The parameter
space of the ratio of MPI tasks to OpenMP threads per task has
been explored on single-node tests, and the best combination
in terms of smallest time to solution has been used for a full
run. The optimal configuration consists of 32 MPI tasks per
node and 4 OpenMP threads per task (here SMT is used)

https://www.lrz.de/services/compute/supermuc/
https://www.cines.fr/en/


TABLE III
PERFORMANCE RESULTS OF THE P-GADGET3 TESTS IN THREE DIFFERENT CODE VERSIONS, INDICATED IN THE FIRST COLUMN. THE TABLE REPORTS

THE TIME TO SOLUTION AND SPEEDUP WITH RESPECT TO THE original VERSION FOR THE WHOLE APPLICATION (SECOND AND THIRD COLUMN,
RESPECTIVELY) AND FOR THE SUBFIND_DENSITY FUNCTION (FOURTH AND FIFTH COLUMN.

Code version Time Speedup Time (fraction of total) Speedup
(total) [s] (total) (subfind_density) [s] (subfind_density)

original 167.4 22.6 (13.5%)
tuned 142.1 1.2× 17.1 (12.1%) 1.3×

optimized 137.1 1.2× 12.7 (9.3%) 1.8×

and therefore is very unbalanced towards a strong use of
MPI. This can be understood with some previous knowledge
of the code’s behaviours: P-GADGET3 is known to have a
well-performing inter-node communication scaling on large
HPC systems, whereas the shared-memory parallelism in most
code sections needs the full backporting of the improvements
described in Section III-A before being able to use efficiently
O(10 − 100) OpenMP threads. We stress that, for this code,
this is a regime explored for the first time during the work on
many-core systems.

Thanks to the performance tuning described above the time
to solution improves by 1.5× and the energy to solution by
1.3×.

Although energy measurements have not been performed for
other codes shown in this work, we claim that our two main
findings (the link between energy consumption and parallel
efficiency, and the role of performance tuning) have general
interest and are worth being reported in this study on KNL.
Future work in the energy field will certainly move forward
from performance tuning to code optimization, in particular
exploring the performance of single code kernels. At even finer
level of granularity, it would be interesting to evaluate the
role played by single instructions like the vector instructions
and their interaction with the clock frequency of the cores
(e.g. [17]).

IV. FLASH

FLASH [18] is a publicly available multiphysics, multiscale
simulation code with a wide, international user base. Orig-
inally developed for modeling astrophysical thermonuclear
flashes, it is appreciated for its multi-species nuclear physics
capabilities, for the native adaptive mesh support (via the
PARAMESH package) and in general for the broad range of
physical routines (including gravity, radiation treatment and
magnetohydrodynamics, MHD in the following), numerical
methods and grid solvers it contains. These features made
FLASH the ideal choice for many CFD and physical applica-
tions. FLASH is classically parallelized via pure MPI, though
a hybrid scheme with OpenMP is included in the most recent
release at the time of writing.

Its uses span the whole domain of astrophysics (and some-
times beyond5), including –just to name a few– interstellar
turbulence and star formation [19], [20] at very high resolution,

5http://flash.uchicago.edu/site/publications/flash_
pubs.shtml

TABLE IV
INTERNAL REFERENCES TO THE FLASH VERSION USED IN THIS WORK,

DOCUMENTING SUCCESSIVE PORTINGS AND OPTIMIZATIONS. THE
OPTIMIZATIONS WERE BUILT ON TOP OF FLASH 4.3.

FLASH version
(internal) Features References

public version double-precision
HD and MHD [18]

2016 HD hybrid-precision HD,
general optimizations [23]

2016 MHD 2016 HD +
MHD from public version this work

optimized MHD
extension to MHD of

2016 HD optimizations and
hybrid-precision scheme

this work

but also the effects of Active Galactic Nuclei on radiogalaxies
[21] and galaxy clusters [22].

Recently, FLASH has been optimized for reducing its mem-
ory and MPI communication footprints. In particular, non-
critical operations are performed in single precision, when it is
verified that this does not cause any impact on the accuracy of
the results. This newly developed hybrid-precision version of
FLASH was able to run on SuperMUC Phase 2 (HSW nodes,
Table II) using less memory (4.1×) and with a speed-up of
3.6× with respect to the standard, double-precision version.
The scaling up to machine scale on SuperMUC Phase 2 is also
remarkable [23]. In the following, we refer to this version of
FLASH as the 2016 version, whose original optimizations were
limited to hydrodynamic calculations, excluding the MHD part
(see Table IV for a summary).

In the present work we want to test whether such a hybrid-
precision scheme can perform equally well also on KNL.
In recent years, reducing the numerical precision of the
computations has become a customary technique for gaining
performance in fields like machine learning; its application
in HPC to an architecture like KNL is therefore extremely
interesting.

A. FLASH: Weak Scaling

We present an extension of the hybrid-precision version
of FLASH [23] to include the treatment of MHD turbulence
and investigate the effect of precision and vectorization op-
timization; we refer to this version of the code as optimized
(again, see Table IV). The addition of MHD turbulence is an
essential ingredient in star formation theories, however it in-
troduces additional variables (the magnetic field components,

http://flash.uchicago.edu/site/publications/flash_pubs.shtml
http://flash.uchicago.edu/site/publications/flash_pubs.shtml


for example) and equations which in turn increase memory,
computation and communication requirements. For this reason
it is important to re-assess scaling and optimization gains.

We thus perform a weak scaling test, i.e. increasing the
numerical resolution proportionally to number of cores used.
The performance is then given by the time spent per timestep
per unit computational cell, which remains constant in the
ideal scaling case. We run the test up to 32 KNL nodes,
in quadrant cluster mode and cache memory mode, because
the memory allocation always exceeds the 16 GB available in
the MCDRAM. The results are displayed in the top panel of
Figure 2, where for comparison we show also the performance
of the 2016 version, and the behaviour of both on HSW
architecture (see Table II).

Concerning the effect of the optimizations, the MHD op-
timizations (diamond symbols) grant a performance gain of
a factor 1.28× respect to the 2016 version (star symbol,
computed on a full KNL node). A speedup of 1.25× is instead
obtained through AVX-512 vectorization, when compared to
the scalar version (compiled with -no-vec -no-simd;
triangle in the same panel). Among all tested codes, FLASH
has the largest speed-up due to vectorization. These two opti-
mizations work in close synergy, as single-precision operations
offer an additional factor of two on vector registers (compared
with 2016 scalar version, plus symbol).

The scaling of the optimized version remains nearly ideal
up to 32 cores, but degrades steadily when using more
(diamonds in the top panel of Figure 2). This behavior is
not intrinsic of the application, but is rather caused by some
system property. We can see this from the optimal scaling
measurement obtained on SuperMUC-NG6 (SKX nodes, Table
II), presented in the bottom panel of Figure 2. The triangles
refer to the optimized MHD code, which outperforms the
2016 version (diamonds) also on SKX, and at odds with KNL
shows acceptable scaling, up to the whole SuperMUC-NG
system (304,128 cores). Up to this number of processors, the
MHD override still influences a bit scaling and performance
(2.35× slower), when compared to non-MHD 2016 version
(blue squares).

Since both systems are equipped with the same interconnect
(Intel Omni-Path with a maximum bandwidth of 100 Gbit/s
per port), the difference we measure does not depend on the
connection hardware. As further evidence of this, different
large-scale tests performed with other applications in this work
do not suffer from the same issue (e.g. VISIT, cf. Section
VI-A). These results suggest that the library in charge of
the parallel communication (Intel R© MPI 2017, the default on
CoolMUC-3) is to be held responsible, also given the addi-
tional messaging load introduced by the MHD variables. The
problem might be mitigated by introducing the OpenMP layer
of parallelization within single KNL nodes, as implemented
in the most recent version on FLASH, or simply by updating
the MPI version (e.g., version 2019, as for the SuperMUC-NG
run). In any case, the scaling issue of FLASH do not seem to

6https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

Fig. 2. Weak scaling tests with the FLASH code on hydrodynamic (HD)
and magnetohydrodynamic (MHD) turbulence. Top: scaling of the optimized
MHD version (diamonds) on KNL. On a single node (64 cores) we show
comparisons with the 2016 version of the pure HD runs. The star symbol
is for vectorized code (AVX512), the triangle for the scalar (-no-vec
-no-simd), and the plus sign for 2016 scalar. For comparison, 2016 and
optimized versions on a single HSW node (square and cross, respectively) are
also shown. Bottom: weak scaling for hybrid-precision, -xCORE-AVX512
code on SuperMUC-NG (SKX system). The code benefits largely from
vectorization and optimization (triangles), with respect to the 2016 MHD
case (diamonds), though with the MHD overhead from the HD 2016 case
(squares). The performance for public MHD version is shown as well (plus
sign).

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG


occur on any of the tested Xeon systems. A deeper analysis
of this feature is left for future work.

When comparing the performance with the one achieved
on other systems, we notice that the Xeon architecture profits
from our optimization more than KNL. Indeed the optimized
version on HSW (cross symbol in the upper panel of Figure 2)
is 1.69× faster than the 2016 one (cross symbol); larger than
the 1.28× factor of the KNL). On a node-to-node comparison,
the execution on HSW is 2.4× faster than on KNL. As
expected, the performance on SKX (diamonds and triangles
in lower panel of Figure 2 ) exceeds the one on KNL by
about 3×.

To sum up, using hybrid precision on FLASH is certainly
a suitable solution to improve the performance of the code,
although the reported test case shows that this technique is
slightly more profitable on traditional Xeons than on many-
core systems.

V. ECHO

ECHO [24] is a finite differences, Godunov type, shock-
capturing astrophysical code designed to solve the equations
of magneto-hydrodynamic in general relativity (GRMHD). In
the recent years it has been employed in numerous studies for
modelling a wide range of high-energy sources, such as pulsar
wind nebulae [25], neutron stars [26], [27] and thick accretion
disks surrounding black holes [28].

On top of the original GRMHD scheme, the code currently
includes additional physical effects such as magnetic diffusion
and mean-field dynamo action [29], expressed in a covariant
formalism consistent with the relativistic framework. These
features, that come with additional computational costs, have
been applied to the study of αΩ-dynamos in magnetized tori
around black holes [30] and relativistic magnetic reconnection
[31].

The version of ECHO used in this work presents a recently
implemented hybrid MPI-OpenMP scheme [32], [33] that
has vastly improved the performance of the original code:
the multidimensional domain decomposition has allowed the
efficient exploitation of large HPC facilities by running on up
to 4096 nodes and 65536 MPI tasks [34], and the additional
layer of multithreading introduced in the most computationally
intensive fractions of the code has led to a significant increase
in its scaling capabilities, although it did not reduce the
memory footprint significantly. The target system of the work
just described was SuperMUC Phase 2, consisting of HSW
nodes. In the following we will focus mostly on evaluating the
performance of the code on KNL, so to assess to what extent
the optimized version of ECHO can exploit the architectural
features of the Intel Xeon Phi. From this viewpoint, our
approach to the optimization of ECHO is similar to the one for
P-GADGET3, namely we evaluate on KNL the performance
of solutions originally developed on Xeon systems.

A. ECHO: Node-level Scalability

Figure 3 shows the results of a scalability test on a single
KNL node on CoolMUC-3. This pure-OpenMP version of

Fig. 3. Single-node scalability test, showing wallclock execution time, for
the baseline (red) and optimized (blue) versions of the ECHO code. Parallel
speedup, relative to the vector and optimized version, is readable on the y-
axis, on the right-hand side. The points mark the median of 20 measures. The
statistical distribution around each point is very narrow, so the only (barely)
distinguishable features are the occasional outliers (small empty circles).
Performance and scalability are both improved by a factor of 2 at and beyond
64 threads.

the code runs a 5-timestep evolution of a standard MHD
test, i.e. the propagation of an Alfvén wave, travelling di-
agonally with respect to the coordinate axis. We adopt a
domain size of 1003 cells (top panel), and run our test
up to 64 threads (without SMT) and 128 threads (SMT
with two threads per core). Threads are always pinned to
individual cores (we set I_MPI_PIN_DOMAIN=core and
I_MPI_PIN_ORDER=compact), although the results are
mostly insensitive to the pinning scheme, as long as threads
are not allowed to migrate and we do not exceed one thread
per core.

The chosen performance metric is the wallclock-time to
solution, displayed for both base (red line in Figure 3) and
optimized (blue line) version. The relative parallel speedup
can be read on the y-axis as well. The points mark the median
of 20 measures; a boxplot statistical analysis is performed
for each point, however we display those features only when
clearly distinguishable, not to overcrowd the plot. For the
same reason, each dataset is slightly jittered along the x-
axis. In this case all distributions are fairly narrow; only the
occasional outliers (small empty circles) can (barely) stand
out; this consistent performance is sign of system stability,
and a suitable pinning scheme.

The performance is improved by a factor up to 2×, and the
code scales better, taking advantage of the full 64 cores on the
KNL. The point at 128 threads shows that hyperthreading gives
no advantage, when not degrading the performance altogether.

The improvement of the optimized version on the KNL is
in line with what observed on HSW [33], with the additional
bonus of larger scalability.



This satisfactory result is also corroborated by the perfor-
mance comparison with the time to solution on a single HSW
socket (14 threads on SuperMUC Phase 2): on KNL with 64
threads the baseline version is a factor of 1.4 slower than
on HSW, but on the optimized version the gap reduces to
1.15, showing as in Section III-A and in [6] that the many-
core architecture profits more than multi-core Xeons from code
optimizations.

B. ECHO: Vectorization and Roofline Analysis

A remaining point to be addressed for the node-level perfor-
mance of ECHO is the potential gain due to vectorization on
the large SIMD registers of KNL. To estimate the performance
gain due to vectorization, we compare the execution times
of the optimized code, compiled with -xMIC-AVX512, with
its scalar version compiled with -no-vec -no-simd. The
performance gain from vectorization is a modest factor of
1.18, largely independent of threads number and optimization,
and not higher than the one observed on HSW, despite the
latter is using only AVX2 ISA on smaller vector registers.
The explanation for this behaviour is mainly related to the
inefficient access to data in memory. This can be explored
more closely by making use of the roofline analysis, as we
do in Figure 4, where we show the five most time-consuming
loops and functions in ECHO from tests on 64 threads.

The roofline model for studying the performance of an HPC
application has been first introduced by [35]. In brief, an
element of a code (loop, function, or even the whole code)
can be represented as a point into a plot of the performance in
FLOPS on the y-axis against the arithmetic intensity (i.e. the
number of operations executed per byte read from memory,
expressed in FLOP/B) on the x-axis. The code element is
classified as memory bound (left-hand side of the plot) if it is
located under the diagonal roof defined by memory bandwidth
of the system, or as compute bound (right-hand side of the
plot) if it is under the horizontal line defined by the peak
performance of the system. Figure 4 has been computed by
making use of the so-called cache-aware roofline model [36]:
in this variant, the diagonal roofs represent the bandwidth of
the different memory levels, as seen from the cores. As an
important consequence, the optimizations in the code that do
not involve algorithmic changes are visualized as vertical shifts
in the roofline plot towards higher performance.

The main message in Figure 4 is in fact the memory-
bound nature of the code, as the points constantly hit the
DRAM bandwidth roof. The details of the algorithmic role
of the single loops and functions represented in the figure go
far beyond the scope of this discussion. However, it appears
clearly that a significant improvement was achieved in the
optimized version over the baseline, as squares appear above
the correspondent circles of same arithmetic intensity, and
closer to, or even above, the actual DRAM roof.

We recall from [33] that the main optimization between
ECHO’s baseline and optimized version is on the threading par-
allelism. Now that the application is mainly DRAM-bandwidth
bound, the next step will be to modernize the access to data

in memory to overcome this bottleneck. We anticipate that, to
some extent, this step will allow an easier data movement to
vector registers and thus a larger vectorization efficiency.

We finally tested whether this bandwidth-limited code could
benefit from using the MCDRAM of the KNL in flat mode
(see Section II). Although it was possible to allocate all
memory objects onto MCDRAM, since the memory footprint
of our runs is lower than 16 GB, we measured no statistically
significant discrepancy with the allocation on DRAM or with
the cache mode.

VI. VISIT

VISIT [37] is a parallel data processing and visualization
tool broadly used in the astrophysics community and in many
other numerical fields. Thanks to its several I/O plugins, it
is commonly used on a very broad spectrum of simulations
(e.g. all of the above simulation codes are supported) as well
as real data (e.g., FITS files, also as multidimensional data
cubes). Its main strengths lie in the versatile (2D and) 3D
rendering capabilities – the ones we investigate in this work
– but most reduction and post-processing operations (selec-
tion/filtering, integration, time series analysis and a broad
range of queries) can be performed as well, through VISIT’s
interactive GUI, or its well-integrated Python interface. The
latter allows to invoke a batch scripting version of VISIT,
which is also the easiest option for use in HPC environment7.
The main advantage of this workflow is to use the same fa-
cilities (computing nodes, storage, user environment, queuing
system) for simulation productions and processing.

Despite the fact that many traditional scientific visualiza-
tion tasks are executed on accelerators like for instance the
Graphical Processing Units (GPUs), and optimized for those,
modern scientific visualization tools can also benefit from
the massive parallelism offered by multi-core and many-core
CPU-only systems at and above node level, as well as from the
large vector registers of modern cores. VISIT is no exception;
besides the default GPU-accelerated rendering, at compile
time one can instead select support by the Mesa 3D graphics
library8. This choice is best suited for servers without displays
or GL environment, such as the compute nodes on CoolMUC-
3, where the use of VISIT’s GUI and Viewer Window is
not possible.

Unlike previous architectures, the KNL was presented as a
platform for graphical and CPU-intensive applications, coming
from a co-processor lineage from the Intel collection. Taking
on a task traditionally reserved to GPUs is a hard test for a
CPU-like hardware, but in our study we present an exhaus-
tive exploration showing that some methods indeed reach a
level of scaling and performance worthy of optimized HPC
applications. Later architectures such as SKX are also capable
of similar tasks; however such a comparison with a later
generation would not be fair. More advanced options however

7Interactive options, both in GUI and in CLI mode, are possible, but of
course require interactive access to the servers

8https://mesa3d.org

https://mesa3d.org
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Fig. 4. Roofline analysis, performed with Intel Advisor 2019, showing the performance of ECHO on CoolMUC-3. Only the most time-consuming loops and
functions are shown. Squares: optimized version. Circles: baseline version. Coloring: elapsed time in percent, where green is larger than 13% and orange is
between 5% and 13% of the total execution time.

exist (see Section VI-B). The version of VISIT we use for all
our runs is 2.13.2, compiled with Mesa.

A. VISIT: Ray-casting Methods and Scalability

The key aspect we investigate here is the choice of the visu-
alization technique most suitable to a many-core architecture,
among the many different ones offered by VISIT. For our
visualization study, we focus on ray casting techniques, as they
present several advantages over other types of visualizations
(texturing, rasterization, etc.). These include easy scalability
to large datasets, low-level compatibility with a wide range
of data types (volumes, polygons, non-polygonal meshes,
particles) and easy introduction of shading and after-effects
[38].

For VISIT we perform two scaling tests: one over 32 nodes9,
comparing different ray-casting methods, and another on a
single node, focusing on node-level optimization.

We always have VISIT perform the same task,
with each of the different sampling options available
within the [Ray Casting: Compositing]
method: [Trilinear], [Kernel-based] and
[Rasterization]. These algorithms have been especially
developed for the use on supercomputers [39] and adopt a
multi-step scheme to parallelize on both domain and image
elements.

We use a linear ramp as transfer function, and a sampling
rate of 800 per ray, to produce a (1024 pixel)

2 image. With the
chosen graphic options, the final image is nearly independent
of the method we choose, thus proving that the resolution of
the rendered image is high enough to contain little trace of
the sampling strategy.

The chosen dataset is a snapshot at redshift z = 0.05 from
a cosmological simulation [40] performed with the grid-based,
adaptive mesh refinement (AMR) code ENZO [41]. A gas

9The largest job allowed by the scheduler on CoolMUC-3.

density volume rendering is shown in Figure 5 (top panel).
The size of the dataset is 2.4 GB, and the output consists of
6722 AMR grids and 1.9× 107 mesh elements.

The plot in Figure 6 shows the scaling results of the
rendering tests. As in Figure 3, we perform a statistical
analysis for each point (we took 10 measurements for each).
This time the distributions are not as narrow, so when needed
we also display the mean µ, the 25th and 75th percentiles
as box, the 9th and 91st percentiles as errorbars; outliers are
still marked by empty circles, and the relative speedup is still
shown on the right-hand side.

The times shown refer to the sum of the two main phases
of the VISIT rendering process: the Pipeline (i.e. the
pre-processing to create a 3D scene) and the Scalable
Rendering phase (in which a 2D image is created from
the 3D elements). The [Kernel-based] method, though
the serial slowest, shows large improvement past 16 cores,
and the best overall scaling. The reason for this sudden
speedup are still under investigation, but are found in the
Scalable Rendering phase. No other method achieves a similar
parallelization degree in this step; meaning that this method
can gain the most in the image and domain decomposition.
This behaviour is also reflected in the [Kernel-based]
line being the steepest of the plot, past 16 tasks.

All tests hit a plateau around 1024 or 2048 tasks (16
or 32 nodes). Even though larger errorbars appear for the
[Kernel-based] method past 2 nodes, the performance
is still by far the best. The second-fastest option is the
[Rasterization], although the scalability is utterly sim-
ilar in [Rasterization] and [Trilinear], and the
difference lies just in the normalization. Our findings confirm
that the strong scalability obtained by the developers up to 400
cores [39] still holds on the KNL nodes.

Finally, in Figure 7 we show the results of our node-
level performance test. We first investigate the effects of



Fig. 5. Volume rendering of the gas density, from a cosmological simulation
run with the AMR code ENZO. This is the dataset used for the tests on VISIT
(zooming on the central 30 Mpc, top panel) and yt (using the whole dataset
with a size of 380 Mpc on a side, bottom panel). In the bottom panel one can
notice that the resolution is better in the central region of the computational
domain, because of the nested grid structure (so-called zoom simulation).

Fig. 6. Wallclock execution time for VISIT volume rendering scalability test,
up to 32 nodes. Axes and errorbars have the same meaning as in Figure 3,
though 10 measurements per point were taken. The different lines compare
the different techniques offered by the [Ray Casting: Compositing]
renderer. The [Kernel-based] method, though the serial slowest, shows
the best overall scaling.

hyperthreading. The orange line in the figure contains three
points at 128, 192 and 256 MPI tasks, obtained on a single
node using 2, 3 and 4 threads per physical core (as well as
a serial point, for reference). We observe that using 2 threads
per core is an improvement over one, reaching a speedup of
almost exactly 64, proof of efficient use of all the resources
of the node. At 3 processes per core, the median performance
is still stable around 64, even though with worse statistics,
while at 4 the median execution time increases slightly. We
conclude that using two processes per core is the most efficient
way to use a single KNL node for a VISIT job, although
spreading the same processes on more nodes (64 each), gives
better speedup (comparison of the yellow and blue lines). In
the latter case, inter-node communication is responsible for
the larger errorbars we observe.

B. VISIT: Discussion on CPU-defined performance

Our experience with Mesa VISIT is overall satisfactory, as
it shows good parallel speedup up to a few thousands of MPI
tasks (which may increase for larger tasks). For comparison,
profiling of Mesa VISIT on earlier generations of Intel Xeon
processors gave much poorer results when compared with
GPU rendering ([38]), even though in a different context. In
that paper those authors present their work on the OSPRay Dis-
tributed Ray-Tracing Framework [42], which can be integrated
in VISIT as essentially a parallel rendering engine, targeting
non-accelerated HPC machines. OSPRay installations have
shown massive improvements over GL or Mesa, especially
for real-time interactive visualization and when performing
large tasks on KNL and Intel Xeon architecture [43]. While
this is an appealing solution, its investigation will be left to
future studies [44]. For the moment we conclude that the
Mesa version of VISIT can already take a huge advantage



Fig. 7. Wallclock execution time for VISIT node-level performance test.
Axes and errorbars have the same meaning as in Figure 6, The method is the
[Kernel-based] for both lines. The HT line (red) refers to hyperthreading,
with 2, 3 and 4 threads per core. The 1ppc line (blue) uses instead 2, 3 or
4 nodes with one process per core each, for direct comparison. Two threads
per core allow for the best speedup.

from the KNL architecture, although this is also the kind
of system where advanced solutions like OSPRay can shine.
Either option seems viable on upcoming, pre-Exascale HPC
systems. Running some tool-assisted performance analysis is
desirable in this perspective, but such investigation is hindered
by the complex client-server relation between VISIT’s main
process and the engines it launches autonomously.

VII. YT

yt [45] is an open-source, community-driven Python toolkit
for analyzing and visualizing 3D data, in the form of meshes
or particle sampling. Its compatibility with most broadly used
simulation tools and the constant development by the active
user community has proven very valuable in fields such as
astrophysics, earth sciences, and molecular dynamics. yt’s
greatest strength is its deep integration with professional
analysis tools used in observational astrophysics, available
within the same Python environment, so that in many case
the numerical and observational/experimental communities
can share the same tools, such as data processing (often
instrument-specific) pipelines, as well as math libraries and
statistics packages.

Although no specific optimization was applied on yt’s
source code previous to our work, here we test several mod-
ernization strategies suitable for Python packages, aiming to
have yt take better advantage of the KNL possibilities.

At variance with VISIT, yt is a Python package, thus its
performance may depend on the distribution on top of which it
runs. In this sense, it is representative of a broad and popular
class of tools.

For these reasons, yt is a suitable testbed for the Intel R©

Distribution for Python∗10 (Intel Python for brevity in the
following). This distribution provides optimized versions of
most of the libraries yt depends on (e.g. NumPy, SciPy,
mpi4py) which yield substantial, documented performance
improvements [46] on HPC systems, including many-core
ones.

A large fraction of yt users utilize the provided self-
installation script, which builds an Anaconda Python distri-
bution. However, using Intel R© proprietary (though freeware)
Distribution for Python∗11 (Intel Python for brevity in the
following) on Intel hardware is a strongly advisable synergy,
on which Intel has spent significant resources over the last
few years (see [46]). We thus begin our work on yt with a
comparison between the two Python distributions, to quantify
the gains in performance or scalability that most users take
the risk to miss out. To this aim, two equivalent Conda
environments are created, based on Python 3.6.2 provided
respectively by Intel and Anaconda, where yt 3.3.5 has been
installed.
yt can in principle make use of several parallelization

strategies: a message-passing scheme via the mpi4py pack-
age, a built-in OpenMP integration via Cython [47], or a
hybrid combination of the two [48]. Besides these possibilities,
the tool offers support for embarrassingly parallel analysis
of time series of datasets. In the following, we will review
examples of these different strategies in use.

A. yt: parallel projections with mpi4py

In our first series of tests we measure the wallclock time of
a yt projection of gas density along the x-axis. According to
[45], the parallelization in the projection in yt is managed by
distributing the AMR grids of the dataset among the MPI tasks.
The dataset is the same we used for the [Ray Casting:
Compositing] rendering with VISIT (cf. Section VI-A and
Figure 5). The tests are performed on a single KNL node
of CoolMUC-3. Different cluster and memory configurations
have been tested but showed no performance difference; the
presented measurements refer to averages of 15 runs per-
formed in the quadrant/flat KNL configuration. MPI thread
pinning is beneficial on many-core systems, thus it was set by
the environment variable I_MPI_PIN_PROCESSOR_LIST
= n-1, where n is the number of MPI tasks.

In Figure 8 we present scaling curves for both Anaconda
and Intel Python, on KNL and, for comparison, on HSW. The
disappointing scaling shows clearly that many-core systems
are not indicated for producing projections. However we can
draw a number of useful considerations:
• our measured scaling is at odds with the good one

shown by [45] but this tension can be explained when
considering the different workloads. First, the dataset
used in [45] has about a factor of 50 more grid elements
than ours. This increased workload can help the scaling;

10https://software.intel.com/en-us/
distribution-for-python

11https://software.intel.com/en-us/
distribution-for-python

https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python


Fig. 8. Scaling plots of yt projections on single KNL and HSW nodes and
for Intel and Anaconda Python distribution, as indicated in the legend.

also, parallelizing across several nodes as they do could
be more beneficial than using more cores on a single
many-core node. This is because, as we measure, the
memory overhead becomes more significant with more
tasks, and adding more nodes brings additional memory
capacity.

• Anaconda Python shows better performance in serial
but also no parallel speedup (blue line in Figure 8).
Interestingly, Intel Python has opposite trends: its time
to solution is worse on few MPI tasks but then it slightly
improves, without significant overhead at large number
of tasks (red line in Figure 8).

• Without a decent scaling, it is not surprising that the
performance is much better on HSW than on KNL.
However, while on HSW Anaconda performs best (yellow
line in Figure 8), on KNL both distributions provide
almost identical results, in terms of best performance on
the node (i.e. minimum on the scaling curve). This finding
confirms that Intel Python, despite the unsatisfactory
performance of yt in this specific problem, is successful
in targeting many-core systems. In forthcoming work we
extend our investigation to other analysis types, testing
the performance on the SKX architecture [49].

As already stated above, using mpi4py is not the only
parallelization strategy available in yt, therefore we decided
to implement these other solutions, and test them on KNL
hardware as well. We present the results in the next Section.

B. yt: volume rendering with Cython

We further set to explore the performance gain and the
parallel capabilities achievable through Cython, when used –
in one of its simplest forms – as an optimized Python compiler.
Integration with Cython is encouraged and supported by yt,
and gives access to additional parallelization schemes. When
used for volume rendering, the parallelism can be exploited

Fig. 9. Parallel scaling for 3D rendering with yt, using Cython and mpi4py.
The meaning of the symbols is the same as in the legend of Figure 3. Intel
Python shows scalability up to 16 cores; Anaconda never scales. Cython
improves all performances by about 2×. On HSW, the serial performance
is better but the parallel speedup negligible.

with mpi4py, as we did in Section VII-A, with OpenMP
(automatic by Cython interface) or even with both, in hybrid
mode. We thus setup a volume rendering test-script, using the
same ENZO file as our VISIT renderings (Section VI-A) and
yt density projections (Section VII-A). We used a linear ramp
transmission function, as instructed by the yt documentation
[50], but within a custom-defined function we could compile
and build12 with Cython. This whole operation is very affine
to what shown for VISIT (top panel of the same figure),
although now we use the full dataset and not just the central
high-resolution region (still visible in the image center). The
produced image is shown next to that rendering, in Figure 5
(bottom panel).

The results of the scaling tests using pure mpi4py are
displayed in Figure 9. We show Anaconda and Intel Python
(violet and yellow lines), together with the scaling obtained by
both without using Cython, but only mpi4py (red and blue
lines). Intel Python achieves moderate but satisfactory scaling,
up to 6× for 16 cores. Hyperthreading is not beneficial, as it
would require good scaling over the whole node in the first
place.

For comparison, the standard Anaconda appears incapable
of any scaling, with or without Cython. The time to solution in-
stead increases up to very large factors due to communication
override. Past 4 or 8 processes also the memory footprint of the
application grows, to occupy almost all the available DRAM.
However this happens also with the Intel version, thus it is
not the reason behind the poor scaling. While larger workload
sizes or different input formats may yield better results, this
scaling behavior is seriously alarming, as the parallelization
strategy involving Anaconda Python and Cython is suggested

12http://docs.cython.org/en/latest/

http://docs.cython.org/en/latest/


Fig. 10. Parallel scaling for 3D rendering with yt, via the built-in OpenMP
interface of Cython, used also in hybrid mode with 2 or 4 MPI tasks. The
symbols have the same meaning as Figure 3, and the mpi4py line of Figure 9
(dashed) is plotted again for reference. For hybrid mode, the results of varying
process pinning are shown as well (solid: default, dotted: scatter). The scaling
provided by OpenMP is measurable but negligible, always outperformed by
the pure mpi4py scheme.

as the default in the yt documentation, and most users may
choose not to go beyond this scheme.

The effect of Cython optimization is very beneficial, as it
provides a speedup of about 2× over any counterpart setup
without it, leaving the scaling behaviour essentially unaltered.

In the same figure we plot also the scaling of our best
instance, Intel with Cython, on a HSW node (green line).
While the serial performance is still more than 6× better on
HSW, there is no speedup past 4 cores, so that the performance
difference on the whole nodes tends to disappear, at variance
with what observed with the projections in Section VII-A, and
similar to what seen for P-GADGET3 (Section III-A). This
confirms that the improvements of Intel Python are specific to
architectures that are more recent and expose more parallelism
than HSW. Somewhat sadly, using embarrassingly parallel
schemes on HSW would still be the most performing, and
least memory-consuming, option.

In Figure 10 we show the results of scaling tests for the
same rendering task, using the automatic OpenMP interface
provided by Cython, and a hybrid mpi4py + OpenMP mode.
The best scaling from Figure 9 is plotted as well for reference
(dashed line). While the OpenMP setup required no addi-
tional work, it brings almost no benefit either. The speedup
is measurable (validating the correctness of our setup) but
negligible, always way below 2×; the absolute performance
in this case is best with Anaconda. The hybrid cases, with
2 or 4 mpi4py tasks, and up to 8 OpenMP threads are
no better: at best, they show a very small speedup as for
pure OpenMP, and they are always outperformed by the pure
mpi4py. The solid lines refer to the default process pinning
(i.e. I_MPI_PIN_DOMAIN=auto, KMP_AFFINITY unset),

while the dotted lines refer to a scheme scattering the processes
around the whole node (i.e. I_MPI_PIN_DOMAIN=auto,
KMP_AFFINITY=scatter). The latter leads always to a
performance degradation, in line with the general behaviour
observed for yt on the KNL: the larger the fraction of the
node used, the smaller the gain.

VIII. SUMMARY AND CONCLUSIONS

The aim of this work is to provide practical insights to HPC
users interested in modernization of hardware and scientific
code. We considered a pool of codes relevant for astrophysics,
including diverse simulation codes (P-GADGET3, FLASH and
ECHO) and two among the most diffuse post-processing and
visualization tools (VISIT and yt). The parallel performance
characterization of this pool is able to touch most of the
relevant aspects for the field of HPC, in sight of the Exascale
computing era. We conduct our performance investigation on
KNL nodes, as their features embody many foreseen aspects
of near-future, massively-parallel architectures. Existing KNL
nodes and clusters are still profitably used for production
in the field, however, here we highlight their value as code
optimization laboratories, regardless of absolute performance.
In other words, a code capable of ticking all the boxes of
the KNL, i.e., taking advantage of all its peculiar features,
will perform very well also on Intel Xeon of current and
previous generations. Astrophysical users whose codes fail to
do so, may still find better performance on Xeon products,
even older ones, but need to pay more attention to optimization
on (pre)exascale systems. For those users, this paper provides
some useful real-world examples. On the other end, vendors
interested in astrophysical applications should be aware of
those boxes that no or few scientific codes are able to tick
(e.g., the flat MCDRAM memory mode).

We are confident that our results will provide useful guide-
lines for the design of new codes and the optimization of
existing ones, as well as for the co-design of new hardware
that may fit better the needs of a scientific community growing
more and more aware of the possibilities and challenges
presented by HPC.

We start by discussing our results about simulation codes.
Large parts of the simulation codes of our choice are developed
by domain scientists, rather than by professional program-
mers, to solve a specific class of problems. FLASH stands
in midground, as its fundamental routines and data layout are
developed and mantained by HPC professionals (and this is
reflected in its base performance), while scientific users code
their own setups, thus contributing to the enrichment of the
physics libraries.

One important downside of user-driven developement is that
most core aspects of these codes were not originally designed
to achieve high parallel performance (data layout, memory and
cache optimization, SIMD). In turn, this has lead to successive
rounds of optimization work, such as the recent optimization
histories we presented in this paper for P-GADGET3, FLASH
and ECHO, that have proven very beneficial across different
architectures, to the point that all these codes can efficiently



be run on modern supercomputers, albeit each with its own
peculiar strengths and weaknesses.

For the considered simulation codes, two main points
emerge. The first is that the availability of a large number
of cores is beneficial in all cases, for typical application
workloads. The parallel speedup achieved by optimized ver-
sions is very encouraging, both at the level of a single KNL
node (P-GADGET3 and ECHO, OpenMP-based) and across
many nodes (FLASH). In this respect the advancements in
the parallelization paradigms (MPI, as seen with FLASH, and
OpenMP), as well as the efforts to introduce hybrid parallel
schemes and improve memory access efficiency (P-GADGET3,
ECHO) have been very valuable: optimization work targeted
to previous generation architectures brings added benefit on
many-core systems, without any additional work necessary.
The second point is that in many cases the nature of the
applications prevents them from taking more than modest
advantage of other degrees of parallelism, such as vectorization
(∼ 1.2× speedup fot both FLASH and ECHO) and SMT
and features such as the flat memory mode. The tested
simulation codes are mostly bandwidth-bound, calling for
further dedicated optimization work at fundamental level, such
as cache-blocking techniques and fundamental revisions of
computational algorithms and data-layout (P-GADGET3).

The discussion is different for data analysis/visualization
codes. Traditionally, data post-processing in astrophysics is
conducted serially or on few CPUs; visualization on one or few
GPUs. However code scaling is increasingly important with
increasing size and complexity of input files (more complex
and larger simulations, but also observations in the Big Data
regime from the newest generation of telescopes). At variance
with the simulation codes, the data analysis applications we
consider are typically built upon rather general-purpose, pol-
ished algorithms (e.g. raytracing), and HPC-aware building
blocks (e.g. Python). As a consequence, we found the codes
more optimized to begin with, but they end up providing less
freedom in performance analysis or tuning, as we summarize
below.

Concerning scaling, the scenario appears mixed. Codes such
as VISIT include algorithms explicitly designed for HPC sys-
tems, and thus are capable of efficient parallel scaling, making
solutions like software-defined visualization very promising,
also targeting hardware successive to the KNL (such as
SKX). Thanks to its good scaling, VISIT can also take good
advantage of hyperthreading to fill very efficiently its pipeline
schedule.

On the other hand yt focuses less on HPC optimization
and more on the synergies given by its comprehensive Python
environment, that however still presents some undeniable bot-
tlenecks in HPC. Some of these issues are being addressed by
tools like Intel Python and Cython; we have shown how these
increase respectively scalability (on KNL more than HSW) and
performance over the standard Anaconda Python distribution.
This is especially true for high-workload tasks such as volume
rendering, though the scaling does not allow the full utilization
of the parallelism exposed by all cores in the node, thus

room for improvement persists. It must be noted that yt’s
algorithm is rather performing in serial execution, and that
embarassingly-parallel workload sharing is a viable solution
for practical usage, although sub-optimal in HPC context.
On this topic of algorithm performance, both VISIT and yt
exemplify how having a pool of algorithms to choose from is
a winning strategy, since the most performing options in serial
are not necessarily the best for large systems, as in the case
of the [Kernel-based] sampling algorithm for ray-casting
with VISIT. Likewise, the possibility of interchanging libraries
and building blocks is a big advantage, as more and more
HPC- and performance-focused packages are deployed (Mesa,
Intel Python, Cython, etc.), although the benefits largely vary
with the considered application.

The two codes present some common limitations as well,
mostly concerning hybrid parallelization and vectorization.
However the most recent software stacks (e.g., Intel MPI and
Python 2019, or the aforementioned OSPRay) can provide ac-
cess to these features on both Xeon and Xeon Phi, sometimes
with minimal or no additional work for the user.

Finally, to look at the same results above but from the
hardware side, what are the architectural features of KNL that
are most useful for the tested applications, and that look most
promising if adopted in a prospective pre-Exascale system?

We noted already that the high number of available cores
per node is a feature most codes take advantage of, even
those with non-hybrid parallelization. From this perspective
it is good news that this feature is carried along in Xeon
processors of the subsequent generation. Also codes may
achieve an additional speedup with a 2 processes-per-core
SMT, thus enabling hyperthreading up to that level is desirable,
though the use of more than two threads per physical core
seldom brings further performance improvement. The AVX512
instruction set was kept and improved in the following Xeon
Scalable processors, together with version of MKL, TBB,
Python and other libraries that include AVX512 versions,
making them more easily accessible by high-level applications
such as VISIT and yt. This is often the first step in the
optimization of this class of codes.

Other peculiar KNL features did not contribute as much as
expected in terms of performance: the most striking example
is MCDRAM. While in principle it addresses a serious bottle-
neck of modern codes (many of which are bandwidth-limited),
the flat mode with allocation on high-bandwidth memory
does not really introduce significant performance difference
(as summarized in Table I)). Moreover, for memory-intensive
applications (as most of the astrophysical ones), the cache
mode is in fact the only viable choice. However, tradeoffs
with a more traditional L3 cache (smaller, faster) are difficult
to evaluate. It appears also that most of the tested codes require
additional work to fully profit from large vector registers,
as vectorization remains a nearly unused resource, with the
exception of FLASH. This issue is coupled to the access of
data into memory: if this is not cache-aware, it can spoil
vectorization, even if it is allowed by the compiler. In general,
the gap between memory and CPU performance (bandwidth



and per-core capacity) is a particularily hard bottleneck for
numerical science applications (as for instance shown in our
roofline plot, in Sec. V). Fortunately, vendors such as Intel
are aware of such issues, thus they keep developing advanced
solutions throughout the whole memory hierarchy even after
the MCDRAM (e.g., the recent Intel R© OptaneTM DC memory
[51]).

A positive note concerns the performance tuning of the
node. While scanning a very large parameter space (node
configuration, compilation flags, ratio of MPI tasks over
OpenMP threads) we have shown that in some cases one
can get a moderate performance boost without any need of
code development. Besides such tuning, we stress however that
some degree of optimization is almost mandatory in practice.

In conclusion, we have shown that the efficient utilization
of modern HPC resources, to enable the next generation of
scientific discovery on the road to Exascale, stems from the
combination of suitable hardware features and applications
which are able to exploit them. It would be extremely useful if
future workflows can automate some basic operations (mem-
ory management via cache blocking, NUMA-aware memory
management, process pinning, to name a few) which are
crucial but currently are left to the developers. The portability
of such solutions is also a concern.
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