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Abstract—After decades of development, flow-based microflu-
idic biochips have become a revolutionary platform for biochem-
ical experiments. To meet the increasingly complex experimental
demands, the length and density of channels in these chips grow
significantly, which brings about higher defect probabilities. Till
now, several methods have been proposed to improve the yield
of these increasingly complex chips. However, the effectiveness
of these methods cannot be properly evaluated, since there
has been no method that systematically analyzes the reliability
of a microfluidic design. In this paper, we propose the first
mathematical models to quantify the reliability of a microfluidic
design by calculating the probability of blockage and leakage
defects happening to the design. Besides, we propose a graph-
transformer-based method to speed up the calculation, so that
designers can have a fast and accurate evaluation of the reliability
of a microfluidic design at any scale.

Index Terms—Microfluidic Biochips, Reliability Evaluation,
Graph-Transformer

I. INTRODUCTION

Microfluidic biochips, also known as lab-on-a-chips (LoCs),
incorporate many miniaturized devices to carry out complex
experiments in molecular biology, biochemistry, and clinical
diagnostics [1]–[3]. Compared with traditional experimen-
tal platforms, LoCs enjoy many advantages including reac-
tant cost reduction, minimal human intervention, and high-
sensitivity [4]. Typically, LoCs consist of two layers: a flow
layer containing flow channels and a control layer containing
control channels. Reagents and samples are transported among
different on-chip devices via flow channels, and the pressure
in control channels controls the transportation.

As the complexity of experiments increases, more on-chip
devices are required to implement more complex functions,
which leads to a significant growth in channel length and
density. Consequently, the chance of channel defect increases,
and the reliability of LoCs becomes a severe concern [5]–
[7]. Due to the unsatisfactory yield, a design may need to be
fabricated multiple times to get a well-functioning LoC [8].

To improve the reliability of LoCs, multiple studies have
been conducted. Apart from some works seeking a break-
through in improving material reliability and enhancing manu-
facturing processes [9], most current works focus on optimiz-
ing the design of LoCs. Zhu et al. proposed to construct a logic

forest so that certain valves and channel segments can share
the same functionalities to realize fault tolerance [10]. Huang
et al. proposed to insert backup channels into original designs
to provide each device-device connection with several possible
paths [11]. Moradi et al. proposed to expand the routing fabric
to guarantee the existence of multiple paths through different
transposers [12]. Liang et al. proposed a more efficient coding
method and merged certain channel segments to reduce the
total length and density of channels in multiplexers [13].

In general, current studies focus on exploring structural
variants of the design to improve the reliability. However, there
is yet no method to evaluate the reliability of a LOC design.
Thus, the degree of the improvement cannot be quantified,
which makes it challenging for designers to effectively im-
prove their designs.

In this paper, we propose the first quantification model that
is able to fit in different production situations and provide
objective and quantitative measurements of the reliabilities of
both the flow and the control layers of LoC designs. Further-
more, we propose a graph-transformer-based implementation,
which learns the outputs of the proposed quantification models,
and gives fast and accurate predictions for LoC designs of
different scales.

The rest of the paper is organized as follows: Section II
introduces common defects in LoCs and the graph transformer.
Section III presents details of the proposed reliability quantifi-
cation models and how to adapt them to different manufactur-
ing processes. Section IV shows the graph representation and
feature extraction, the network architecture, the training dataset
generation, and the overall flow of the graph-transformer-based
implementation. Section V illustrates experimental results, and
Section VI draws the conclusion.

II. PRELIMINARIES
A. Defects in Microfluidic Biochips

Recent advances in fabrication, such as polydimethylsilox-
ane (PDMS) and dense integration of microvalves, have en-
abled the rapid development of microfluidic biochips [14].
However, due to the limitation of material and processing
precision, as the total length and density of channels increase,
defects happen more frequently to microfluidic channels [5].
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Fig. 1: Channel defects [6]. (a) Blockage. (b) Leakage.

There are two common types of channel defects [6]:
1) Blockage: accidentally broken channel segments. Fig.

1(a) shows examples of broken control channels and flow
channels. A blockage is usually caused by environmental parti-
cles and imperfect silicon wafer mold [5]. Besides, reagents or
cells may also get clogged in flow channels and block the fluid
transportation. For flow channels, blockage prevents reagents
from reaching the reactor. For control channels, blockage
prevents pressure from reaching the valves, leading to losing
control over the valves along the channel.

2) Leakage: unexpected connections between channels.
Fig. 1(b) shows examples of leaking control channels and
flow channels, respectively. For flow channels, reagents may
leak from one channel to the other, resulting in dilution and
contamination. For control channels, pressure may leak from
one channel to the other, resulting in the unanticipated closure
of valves.

According to previous studies [5], [6], blockage happens
to different parts of a design nearly randomly, while the
probability of leakage increases as the length of parallel
channels increases or the distance between two neighboring
channels decreases. The probabilities of blockage and leakage
defects are also closely related to the chosen technology in the
manufacturing process.

B. Graph Transformer

First proposed in 2017, the transformer has achieved huge
success in the field of Natural Language Processing (NLP)
[15]. Since then, numerous follow-up works have been con-
ducted to adapt the transformer to other fields. Among the
many adaptations for graph classification and regression, Uni-
versal Graph Transformer Variant 2 (UGformer V2) is one of
the latest works and has outstanding performance [16]–[18].

As shown in Fig. 2, the UGformer V2 layer first applies a
transformer self-attention network to learn the local features
of all nodes. The following Graph Convolutional Networks
(GCNs) are then utilized to incorporate the structural informa-
tion of graph G into learning, and combine the representations
obtained before to get the output graph embedding. Formally,

Fig. 2: Illustration of UGformer V2 [16].

we can define a UGformer V2 layer as:

H ′(k) = ATT (H(k)Q(k), H(k)K(k), H(k)V (k)),

H(k+1) = GCN(Adj,H ′(k)),
(1)

where H ′(k) stands for the output of the transformer self-
attention network, H(k) is the output of the kth UGformer
V2 layer, H(0) is the feature matrix of all nodes in G, Adj is
the adjacency matrix of G, ATT represents the transformer
self-attention network, and GCN represents GCNs. Q(k),
K(k), and V k are query-projection, key-projection, and value-
projection matrices, respectively.

III. QUANTIFICATION MODELS OF DEFECTS
PROBABILITIES

The proposed quantification models are applicable to both
flow and control layers. We decompose LoC designs into grids
with adjustable granularity to ensure the generality of the
proposed models [10], [19]. Fig. 3 gives examples of grid-
formed designs of control and flow layers.

A. Model of Blockage Probability

Blockage happens to different parts of a design nearly
randomly [6]. Hence, when a segment fails, the chance
that its backup segments can take over the original fluid
transportation is the most important factor in determining
the reliability against blockage. In this case, we propose an
adaptive propagation-based quantification model to calculate

(a) (b)

Fig. 3: Examples of randomly generated grid-formed designs
(a) Randomly generated control layer design. (b) Randomly
generated flow layer design.
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Fig. 4: Schematics of defects probability quantification mod-
els. (a) Schematic of the blockage probability quantification
for an example gi with Ni = 2 input segments. (b) Schematic
of the leakage probability quantification model.

Pblockage, which is the probability of the design failing owing
to blockage.

The fluid transportation in channels of LoCs is similar to
the flow of current in electronic circuits [20]. By replacing
the current flow Ik with the transportation of fluid Tk, the
potential difference ∆Uk with the pressure difference ∆Pk,
and the resistance Rk with the channel length Lk, we can adopt
Kirchhoff’s first and second laws [21] to derive directions of
fluid transportation in different designs:∑n

k=1 Ik = 0 =⇒
∑n

k=1 Tk = 0∑m
k=1 ∆Uk = 0 =⇒

∑m
k=1 ∆Pk = 0

∆Uk = Rk × Ik =⇒ ∆Pk = Lk × Tk

(2)

where n stands for the number of branches with current/ fluid
flowing toward or away from the node, and m is the number
of components in a closed loop.

Arrows in Fig. 4 (a) illustrate the calculated fluid trans-
portation directions of part of the example design shown in
Fig. 3 (b). Suppose that grid point gi has Ni input segments,
and gj is the neighboring grid point along the input segment
of grid point gi, as shown in Fig. 4 (a). Then pblockagei , the
probability that fluid from the starting points fails to reach gi,
can be derived by the following formula:

pblockagei =

Ni∏
j=1

pbi,j

pbi,j = pblockagej + (1− pblockagej )× (1− (1− pbunit)
li,j )

(3)

where pbunit stands for the probability of each segment with
unit length being broken, and pbi,j represents the probability of
the fluid failing to reach gi regarding gj . Such failures can be
categorized into two types: i) the fluid from the starting points
fails to reach gj ; ii) the fluid from the starting points succeeds
in reaching gj , but the connection between gi and gj is broken.
Further, li,j stands for the length of the connection between
gi and gj , here it is equal to dunit, the chosen granularity.
As shown in Fig. 5(a), pbi,j will increase with li,j , which is
consistent with the law summarized in [6].

Since the quantification model focuses on the robustness of
LoC designs, we assume that the external fluid and pressure

(a) (b)

Fig. 5: Adaptive Relationships between pbi,j and li,j , pli,j
and di,j . (a) Different relationships between pbi,j and li,j by
changing pbunit. (b) Different relationships between pli,j and
di,j by changing plunit.

supply is 100% reliable. In this case, we set all pblockagesi to
0, where si are indices of the starting points. By iteratively
applying Eq. 3, we propagate our calculation from the starting
points to the ending points, and eventually get the probabilities
that fluid fails to reach the Ne ends, marked by pblockageei ,
where ei are indices of the ending points. The design is
regarded as well-functioning only when fluid can reach all
the ends. Thus, the probability of the design failing owing to
blockage, denoted as Pblockage, can be calculated by:

Pblockage = 1−
Ne∏
l=1

(1− pblockageei ) (4)

B. Model of Leakage Probability

The probability of leakage increases as the length of
parallel channels increases or the spacing between channels
decreases [6]. Hence, the distance between a segment and
its nearby segments is the key factor in determining the
reliability against leakage. In this case, we propose an adap-
tive neighboring-region-scanning-based quantification model
to calculate Pleakage, which is the probability of the design
failing owing to leakage.

As shown in Fig. 4(b), the position of a segment is repre-
sented by the Cartesian coordinates of its middle point. Taking
segment segi marked by the red line as the center, we select
all other segments segj within the red circle of radius Rcal,
which is a manually-set threshold, and mark them green. Then
we calculate the probability of leakage happening between
segi and these selected segments, and combine them to derive
pleakagei , the overall probability of leakage happening to segi.
Notably, the larger Rcal is, the more accurate pleakagei we will
have. Suppose that a total of Ns segments are selected, then:

pleakagei = 1−
Ns∏
j=1

(1− pli,j)

pli,j = plunit
di,j

(5)

where plunit represents the leakage probability of two seg-
ments with unit distance, pli,j is the probability of leakage
happening between segi and segj , which is exponentially
related to di,j , i.e. the Euclidean distance between segi and
segj . As shown in Fig. 5(b), pli,j will decrease with the
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Fig. 6: Schematics of collecting statistical data for (a) blockage
and (b) leakage.

increase of di,j , which is consistent with the law summarized
in [6].

As a matter of fact, when leakage happens between chan-
nels that have exactly the same sources and targets, i.e. a
channel and its backup channel, the leakage will not affect
the normal operation of the chip. This feature can be taken
into consideration by explicitly defining the backup channels
and modifying Eq. 5 to only calculate pli,j for all segj that
are not among backup channels of segi. Under this setting,
any potential leakages considered will result in inappropriate
transportation of fluids. In this case, Pleakage is equal to the
probability of the design having at least one leakage. Assume
there are Nseg segments in the given design, and dunit is the
chosen granularity, Pleakage can then be derived by Eq. 6. If
we keep the same Rcal and change the granularity, the number
of selected segments will change quadratically, thus distort the
result. Hence, the item dunit

2 is used in the formula to correct
the error caused by the change of granularity.

Pleakage = 1− (

Nseg∏
i=1

(1− pleakagei))
dunit

2

(6)

C. Adaptation to Different Manufacturing Processes

In order to quantify the reliabilities of designs under a
specific manufacturing process, it is necessary to choose
suitable pbunit and plunit that can best reflect the precision
of the process. As shown in Fig 5(a) and (b), the choice of
pbunit and plunit influences how the probabilities of blockage
pbi,j and leakage pli,j are affected by the length of a channel
li,j and the distance between two unit-length-long channels
di,j , respectively. Here, we give a detailed 2-stage guidance of
how to adapt the proposed quantification models to a specific
manufacturing process.

1) Stage I: At this stage, one should collect statistical
data of defects happening under different design conditions
during manufacturing. Since real designs have very different
and complex structures, statistical data collected from them
are affected by too many factors and lack of consistency,
which makes the data unable to properly reflect the pattern of
reliability of the manufacturing process. Hence, a systematic
approach is proposed to manufacture test designs and generate
statistical data in the following.

As shown in Fig 6, we propose to manufacture channels
with n different lengths l1, l2, ..., ln as the blockage testing set,
and channel pairs of unit length but with n different distances
in between d1, d2, ..., dn as the leakage testing set. Each set is

(a) (b)

Fig. 7: Expectations of deviations. (a) Different relationships
between E(bdev(ls)) and ls by varying pbunit. (b) Different
relationships between E(ldev(ds)) and ds by changing plunit.

repeated for Ntotal times to form the blockage and leakage
testing groups. The larger Ntotal is, the more trustworthy
the statistics will be. Then we can apply high pressure to
in ports and detect the pressure level at out ports. In the
blockage testing group, if the detected pressure is low, there
is a blockage in the channel. In the leakage testing group,
if the detected pressure is high, there is a leakage between
the channel pair. For each ls and ds, we count the number
of blocked channels, denoted as Nb(ls), and the number of
leaking channel pairs, denoted as Nl(ds), then we can derive
the statistical data by:

pbstatistic(ls) =
Nb(ls)

Ntotal
, plstatistic(ds) =

Nl(ds)

Ntotal
(7)

2) Stage II: At this stage, we select suitable pbunit and
plunit, whose corresponding curves can best fit the collected
statistical data.

Since conducting infinite tests is impractical, statistical data
will inevitably have deviations. Let bdev(ls) and ldev(ds) be
deviations of pbstatistic(ls) and plstatistic(ds) respectively,
and they are calculated by:

bdev(ls) = |pbi,j(ls)− pbstatistic(ls)|
ldev(ds) = |pli,j(ds)− plstatistic(ds)|

(8)

The corresponding expectations can be calculated as:

E(bdev(ls)) =

Ntotal∑
q=0

PNb(ls)(q)× |pbi,j(ls)−
q

Ntotal
|

E(ldev(ds)) =

Ntotal∑
q=0

PNl(ds)(q)× |pli,j(ds)−
q

Ntotal
|

(9)

where PNb(ls)(q) and PNl(ds)(q) represent the probabilities of
Nb(ls) = q and Nl(ds) = q, respectively, and they can be
expressed as:

PNb(ls)(q) = CNtotal
q × pbi,j(ls)

q × (1− pbi,j(ls))
Ntotal−q

PNl(ds)(q) = CNtotal
q × pli,j(ds)

q × (1− pli,j(ds))
Ntotal−q

(10)

Fig. 7 shows expectations of bdev(ls) and ldev(ds) with the
same settings of pbunit and plunit in Fig. 5, respectively.
According to the figures, though curves have different shapes,
they share the same trend that expectations of deviations
become much smaller when ls and ds are larger.



To perform curve fitting, which involves selecting appropri-
ate pbunit and plunit values that produce curves most closely
resembling the statistical data for the relationships between
pbi,j and li,j , and pli,j and di,j , the most straightforward
and intuitive approach is to minimize the mean absolute error
(MAE). However, MAE simply adds the deviations up, and
ignores the different significance of these deviations, which
limits its performance. In this case, we propose to minimize
a weighted MAE, which can achieve better performance:

Min
∑n

s=1 ws × |pbi,j(ls)− pbstatistic(ls)|

Min
∑n

s=1 ws × |pli,j(ds)− plstatistic(ds)|∑n
s=1 ws = 1

(11)

where w1, w2, ..., wn follows an increasing order to ensure
the fitting results refer more to the statistical data collected
with larger ls and ds, which have smaller expected deviations
according to Fig. 7.

IV. GRAPH-TRANSFORMER-BASED
IMPLEMENTATION

The proposed quantification models have a trade-off be-
tween accuracy and time usage. If using a fine enough granu-
larity dunit or a very large Rcal to seek the highest accuracy,
the time usage will increase significantly, making it impractical
to use the models as feedback to automatically optimize
original designs. Hence, we propose a machine-learning-based
implementation that slightly sacrifices the accuracy but can
significantly reduce the time usage.

Since the proposed implementation must face designs of
very different scales, the scalability of the chosen machine-
learning method is of great importance. Considering this, we
represent designs of different scales as graphs with different
numbers of vertices and weights of edges, and utilize the graph
transformer, which is among the currently most performant
graph learning methods, to learn from the proposed quantifi-
cation models and achieve fast and accurate predictions.

A. Graph Representation and Feature Extraction
Different grid-formed LoC designs are the inputs of our

method. To start with, we need to transform the original grid-
formed designs into graphs so that the data can be fed into
the graph transformer.

For a given grid-formed LoC design, simply regarding all
grid points as nodes will get the critical information lost in a
sea of useless information, which will only burden our training
and will not lead to better training results. Hence, we propose
to extract only the key grid points crucial to the design, and
then form nodes accordingly.

There are four kinds of points that characterize an LoC de-
sign: starting points, ending points, corners, and interchanges,
i.e. grid points that are connected with more than two channel
segments. The discarded grid points are empty spaces and
interior points of straight channel segments, which do not
contribute much to characterize the structure of a design.

For each node, we use a 6-dimensional vector to represent
its features. The first two elements represent the location of the
node, and the remaining four elements are one-hot elements
representing the kind of the point. As for the edges of a

TABLE I: The Graph Transformer Configuration

Layer Type Input-Dim Output-Dim Activation

1 Fully-connected 6 256 N/A
2-4 UGformer V2 256 256 N/A
5 Soft attention 256 256 Relu
6 Sum & max pooling 256 256 N/A
7 Fully-connected 256 1 N/A

graph, we assign the Euclidean distances between nodes to
corresponding edges. Since grid points not extracted to form
nodes are either empty spaces or interior points of straight
channel segments, we can directly use di,j , as mentioned in the
previous section, to represent the Euclidean distances between
nodes. For nodes that are not connected with each other, di,j
is set to infinity to denote the disconnection.

B. Network Architecture

The principles of the proposed quantification models of
blockage and leakage probabilities are different. To ensure
a better training effect, we train two networks to predict
reliabilities against leakage and blockage respectively. Each
network takes the graph with node features and weighted edges
as the input, and outputs a 1-dimensional vector, i.e. a value,
as the prediction.

As shown in TABLE I, the structure of the network con-
sists of five parts: i) the pre-encoder, which linearly encodes
the input and does dropout to alleviate overfitting; ii) the
UGformer V2 [16], which further extracts features from the
graph; iii) the self-attention block, which helps to learn the
latent connections between distant nodes; iv) the sum & max
pooling, which can take into account both the graph structure
and key nodes’ features to get better embeddings [22]; v) the
predicting block, which consists of a fully-connected layer,
and gives a prediction vector according to the processed graph
embeddings. Dropout is also applied in this block to alleviate
overfitting.

Among the many graph transformers [16]–[18], we choose
UGformer V2 as the core part of our network, because of its
easy training and efficient functions [16]. Each UGformer V2
layer takes the current graph embedding and the adjacency
matrix as the input and produces the updated graph embed-
ding. To learn potential patterns of graphs, we use a 6-256
fully-connected layer with dropout to extract features of nodes
with overfitting prevention, and utilize three 256-256 cascaded
UGformer V2 layers to update graph embeddings.

Soft attention is adopted to strengthen the understanding
of nodes [23]. The graph embedding goes through a 256-
256 fully-connected layer with the activation of Relu and
turns into the intermediate results. The same graph embedding
also goes through the other 256-1 fully connected layer with
the Sigmoid activation to get each node’s attention weights.
The updated graph embedding is derived by multiplying the
intermediate results and attention weights.

Then, we use sum & max to further strengthen the under-
standing of the graph structure and key nodes’ features [22]. In
the end, a 256-1 fully-connected layer is used to derive the 1-
dimensional prediction vector from the last graph embedding.



Fig. 8: The graph transformer training flow.

C. Training Dataset Generation

For learning-based methods, the training dataset is of great
importance. Even with a highly efficient learning model, there
is a substantial possibility that the learning performance will
not be satisfactory if the dataset is insufficiently large or the
data quality is subpar.

In order to enhance our model’s ability to infer and handle
diverse designs, an optimal training dataset should consist
of a substantial number of LoC designs that exhibit notable
structural variations and do not conform to a uniform design
pattern. Considering that it is difficult to obtain such dataset
through real designs, we design a four-stage randomized
design generation algorithm to generate the training dataset:

• Randomly generate the dimensions n × n of a design,
and then a corresponding empty grid will be produced.

• Randomly generate the number of starting and ending
points. Since the trained graph transformer is expected
to be applicable to both control and flow layers, we
randomly decide whether to generate a control layer or
a flow layer design. If generating a control layer design,
starting points will be randomly placed on the top and
bottom of the design, and ending points will be randomly
placed inside the design. Otherwise, starting points will
be randomly placed on the top, and ending points will be
randomly placed on the bottom of the design.

• Randomly generate channel segments in the design. Once
the generation is finished, check if paths from starting
points can reach all ending points. If not, the design will
be regarded as invalid, and this stage will be re-executed.

• Apply the proposed quantification models of defects
probabilities on the design, and add the derived values
into a table recording the sequence number of designs
and their corresponding defects probabilities.

By repeatedly executing the algorithm, we generate 26411

random LoC designs and a table storing the blockage and
leakage probabilities of these designs, which are regarded as
the ground truth in the training.

D. Overall Flow
Fig. 8 shows the overall flow of the graph transformer

training, which consists of three stages: graph representation,
label generation, and graph transformer training.

As illustrated in Section IV A, each grid-based design is
examined at the beginning of the graph representation stage,
and key grid points like starts, ends, corners, and interchanges
are selected as nodes of the graph. Then their corresponding
feature vectors and the adjacency matrix are formed. Combin-
ing them, the corresponding graph representation G is derived.

In the label generation stage, quantification models of
defects probabilities are adjusted by following the guidance
proposed in Section III C. Then the adjusted quantification
models are used to calculate Pleakage and Pblockage of different
designs generated in Section IV C, and these probabilities are
regarded as the ground-truth values for the training process.

As for the graph transformer training stage, G is fed into the
graph transformer, and predictions P ′

leakage and P ′
blockage are

derived as the output of the graph transformer. Losses between
the predictions and the corresponding ground-truth values are
used to train the graph transformer. When the training is
converged, the graph transformer can efficiently give accurate
predictions about defects probabilities of different designs.

V. EXPERIMENTAL RESULTS
A. Reliability Evaluation of Existing Fault-Tolerant Designs

With the help of the proposed quantification models, we are
able to objectively and quantitatively evaluate the reliabilities
of some classic designs and their fault-tolerant modifications.
As shown in Fig. 9, designs in the first row are the fault-
tolerant transportation channel, original CoMUX, and 8-to-4



Fig. 9: Classic designs with their modifications. (a1) Original
fault-tolerant transportation channel and (a2) enhanced fault-
tolerant transportation channel [11]. (b1) Original CoMUX and
(b2) optimized CoMUX [13]. (c1) 8-to-4 crossbar and (c2)
expanded 8-to-4 crossbar [12].

crossbar, respectively. Designs in the second row are modifi-
cations of these classic designs [11]–[13].

We do not artificially define backup channels based on the
functions of these designs but analyze the topology of these
designs. The proposed quantification models are applied with
three different pbunit and three different plunit to evaluate the
reliabilities of these classic designs and their modifications at
different precision manufacturing processes. According to the
results shown in TABLE II, all three modifications outperform
the original designs in the reliability against blockage, and
design (b2) also improves the reliability against leakage, which
are consistent with the description in the corresponding papers
[11]–[13]. There is no mention of leakage resistance in the
papers for the other two modifications, and they are tested
to be more prone to leakage than the original designs due to
the increased total length and density of channels, which is
consistent with the law summarized in [6]. We conclude that
it is the use of channel merging in design (b2) that allows the
design to improve in both reliabilities against blockage and
leakage, and the use of back-up channels in design (a2) and
(c2) can improve reliability against blockage but increases the
risk of leakage.

B. Performance of the Graph-Transformer-based Implementa-
tion

As mentioned in Section IV C, we have generated 26411
designs as the dataset. These designs are divided into three

TABLE II: Reliabilities of Designs in Fig. 9

Design
Pblockage Pleakage

pbunit pbunit pbunit plunit plunit plunit

=0.1% =0.3% =0.5% =10% =20% =30%

(a1) 0.11% 0.35% 0.64% 0.33% 11.45% 65.82%
(a2) 0.10% 0.32% 0.57% 0.37% 12.98% 70.66%
(b1) 19.44% 47.74% 66.13% 1.12% 34.43% 97.74%
(b2) 11.83% 31.78% 47.53% 0.85% 28.09% 95.15%
(c1) 1.21% 3.68% 6.22% 1.92% 54.15% 99.93%
(c2) 0.40% 1.22% 2.06% 3.57% 76.49% 99.99%

1 (a1) is an original design in [11] and (a2) is the modified design in [11]; (b1)
is the original design in [13], and (b2) is the modified design in [13]; (c1) is
an original design in [12] and (c2) is the modified design in [12].

(a) (b)

Fig. 10: Training effects of the graph transformer. (a) Loss
and accuracy curves. (b) L1-error distributions.

parts: 15847 for training, 5282 for validation, and 5282 for
testing. We use the proposed quantification models to calculate
these designs’ leakage and blockage probabilities, which are
used as supervised labels. We train the graph transformer on a
server with one Intel i7-9700K CPU and two Nvidia GeForce
RTX 2080 Ti GPUs for 500 epochs and choose the converged
model with the highest accuracy. To improve the robustness
of the training process and get better training effects, we add
noise to the training data and labels during the first 100 epochs
[24]. Adam [25] is chosen as the optimizer, and MSE is
selected as the loss function. The learning rate is set to 0.001
initially and is halved every 50 epochs. The batch size is set
to 256. The dropout probability for the pre-encoder and the
predicting block is set to 0.5.

Fig. 10 (a) shows the training curves of the graph trans-
former. The training converges quickly, and the average con-
verged accuracy of P ′

blockage and P ′
leakage on the set of testing

designs is 98.7%. As shown in Fig. 10 (b), the average
L1-error of the graph transformer is 0.022, and the L1-
error distribution is centered on the small values, proving the
accurate learning performance of the graph transformer.

To show the efficiency of the graph transformer, we change
the granularity of the same design from 1µm to 25µm, and
test the time usage and accuracy of the proposed quantification
models and the graph-transformer-based implementation. As
shown in Fig. 11 (a), as the granularity gets rougher and
rougher, due to the increased distortion between the meshed
representation and the actual design, the accuracy given by
directly applying the proposed quantification models decreases
from 0.998 to 0.955, and the corresponding time usage also
decreases significantly from 9987.382s to 0.063s. In stark
contrast, as shown in Fig. 11 (b), thanks to the operation of

(a) (b)

Fig. 11: Time usage and accuracy of evaluations with different
granularities. (a) Directly apply the proposed quantification
models. (b) Apply the graph-transformer-based implementa-
tion.



TABLE III: Performances of Fitting for pbunit

pbunit Error of MAE Error of Weighted MAE Improvement

0.1% 0.08% 0.07% 12.50%
0.2% 0.78% 0.76% 2.57%
0.3% 1.94% 1.79% 7.73%
0.4% 2.47% 2.39% 3.24%
0.5% 2.96% 2.87% 3.05%

TABLE IV: Performances of Fitting for plunit

plunit Error of MAE Error of Weighted MAE Improvement

10% 18.31% 18.27% 0.22%
15% 12.19% 12.12% 0.57%
20% 8.55% 8.40% 1.75%
25% 6.88% 6.81% 1.02%
30% 5.66% 5.45% 3.71%

abstracting the design into a graph in terms of key grid points,
though dealing with designs with different granularities, the
graph-transformer-based implementation has consistent accu-
racy at around 0.983, while the time usage is always around
0.0046s.

C. Performance in Adaptability

To verify the adaptability of the proposed quantification
models, we change pbunit from 0.1% to 0.5%, and plunit
from 10% to 30%, and apply random experiments to test the
performance of the adaptation approach proposed in Section
III C. In order to reduce the bias caused by randomness in
every fitting, we repeat 2000 fittings and calculate the average
errors by using MAE and the proposed weighted MAE for
each pbunit and plunit, respectively.

In each fitting, following the adaptation approach pro-
posed in Section III C, we set n = 5, ls = {200, 400,
600, 800, 1000}µm, ds = {2, 4, 6, 8, 10}µm. We generate
Ntotal = 500 testing designs for each ls and ds, which
have pbunit(ls) and plunit(ds) chance to fail, respectively.
We record the number of failed testing designs in blockage
and leakage testing sets as Nb(ls) and Nl(ds), respectively.
The statistical data is then calculated by Eq. 7. In the end,
we perform curve fitting based on the statistical data using
MAE and the proposed weighted MAE, whose weights are set
as {0.08, 0.12, 0.20, 0.28, 0.32}. The fitting performances are
shown in TABLE III and TABLE IV. According to the results,
both MAE and the proposed weighted MAE can achieve
accurate curve fitting with at most 2.96% error for pbunit
and 18.31% error for plunit. Moreover, the proposed weighted
MAE can improve the fitting accuracy by at least 2.57% and
0.22% for pbunit and plunit respectively. Hence, the proposed
quantification models are verified to be adaptive for different
manufacturing processes.

D. Example of a Design Aided by the Proposed Quantification
Models

To show how the proposed quantification models can pro-
vide timely feedback to help improve microfluidic designs, we
take the fault-tolerant design proposed in [10] as an example.
As shown in Fig. 12(b), blue lines represent the original

Fig. 12: An example of improving existing fault-tolerant
design using the proposed quantification model. (a) Original
design. (b) Fault-tolerant design proposed in [10]. (c) Design
with further modification.

design, and orange lines represent channels proposed to be
added to realize fault tolerance in [10]. Based on our reliability
quantification models, we find that compared to the original
design, the fault-tolerant design proposed in [10] improves the
reliability against blockage by 10.6%, but slightly decreases
the reliability against leakage by 1.6%.

We then randomly modify the fault-tolerant design by
adding, removing, and changing the positions of channel
segments within a small range that guarantees the original
functionality of the design. Once a randomly modified de-
sign is generated, we analyze its reliability with the graph-
transformer-based implementation of our proposed quantifica-
tion models to see if the modification can bring improvement.
Fig. 12 (c) shows one randomly modified design, in which
green lines indicate our changes. Compared to the original
fault-tolerant design, the new design further reduces Pblockage

and Pleakage from 17.4% to 15.7% and 6.9% to 1.9%, hence
improvements of 9.8% and 72.5%, respectively.

It is noteworthy that Fig. 12 (c) is just one of the many
possible modified designs, and we have yet to apply any
optimization to derive the best-modified design but are already
able to improve the reliability significantly. Hence, the great
potential for design reliability from the efficient feedback that
our quantification models can provide is evident.

VI. CONCLUSION
In this paper, we proposed the first quantification model

that can easily be adapted to different manufacturing processes
by changing a few parameters, and can be used to evaluate
the reliabilities of different microfluidic designs. Moreover,
we proposed a graph-transformer-based implementation of the
quantification models, which can conduct rapid evaluations
while maintaining a relatively high accuracy of evaluation.
According to the experimental results, with the help of the
efficient feedback provided by the proposed quantification
models, even a random modification can already improve
reliabilities against blockage and leakage of the existing fault-
tolerant design by 9.8% and 72.5%, respectively. Hence, the
proposed quantification models and their graph-transformer-
based implementation promise to support us in developing au-
tomatic reliability modification tools to improve the reliability
of LoC designs in the future.
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