Deep Learning-Based Mutual Detection and Collaborative Localization
for Mobile Robot Fleets Using Solely 2D LIDAR Sensors

Robin Dietrich! and Stefan Dorr!

Abstract— Localization for mobile robots in dynamic, large-
scale environments is a challenging task, especially when relying
solely on odometry and 2D LIDAR data. When operating
in fleets, mutual detection and the exchange of localization
information can be highly valuable. Detecting and classifying
different robot types in a heterogeneous fleet, however, is non-
trivial with 2D LIDAR data due to the sparse observation
information.

In this paper a novel approach for mutual robot detection,
classification and relative pose estimation based on a combi-
nation of convolutional and ConvLSTM layers is presented
in order to solve this issue. The algorithm learns an end-to-
end classification and pose estimation of robot shapes using 2D
LIDAR information transformed into a grid-map. Subsequently
a mixture model representing the probability distribution of
the pose measurement for each robot type is extracted out of
the heatmap output of the network. The output is then used
in a cloud-based collaborative localization system in order to
increase the localization of the individual robots.

The effectiveness of our approach is demonstrated in both,
simulation and real-world experiments. The results of our
evaluation show that the classification network is able to
achieve a precision of 90% on real-world data with an average
position estimation error of 14 cm. Moreover, the collaborative
localization system is able to increase the localization accuracy
of a robot equipped with low-cost sensors by 63%.

I. INTRODUCTION

Mobile robots are a key component to realize a flexible,
efficient, and scalable material flow in logistics and produc-
tion sites. Due to the individual requirements of different
transport tasks, we commonly find heterogeneous fleets shar-
ing workspaces with humans and human controlled vehicles,
like forklifts. For navigation, 2D LIDAR sensors are still
predominant since they have proven suitable robustness and
reliability for these kinds of environments and even more
important, simultaneously provide safe collision avoidance
with humans. Moreover, the design of the robots to carry
loads often forbids mounting further sensors like camera
systems at suitable positions.

However, localizing the robot with 2D LIDAR data is
challenging in these dynamic and large-scale environments,
especially when dealing with noisy sensor data from safety or
low-cost scanners. In our previous work [[1], we tackled this
issue with a cloud-based cooperative long-term Simultaneous
Localization and Mapping (SLAM) approach where each
robot as well as further available static sensors transmit
detected changes of the environment to a map server which
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fuses the information into a consistent global map and pro-
vides map updates for the mobile robots. These map updates
have been shown to be crucial to maintain an accurate and
robust localization of the robot, also in highly changing
environments. However, as for map-based localization ap-
proaches in general, it requires a sufficient density of static
and semi-static objects within the environment visible for the
sensors that are typically mounted at leg height. In areas with
sparse geometrical structure, an up-to-date map cannot help
much to decrease localization uncertainty. This circumstance
gets worse when using low-cost sensors with a limited field
of view.

In this work, we approach this issue by adding a mutual
localization capability to our cooperative system exploit-
ing the property that robots operating in fleets and shared
workspaces constantly observe each other. Extracting other
robots from sensor observations and processing the relative
pose measurements can thereby overcome the discussed
problems in sparse structured areas. In contrast to similar
work [21[3][4]115[[6[[7]], we follow a solely 2D LIDAR- and
non-marker-based approach.

We leverage the recent advances in deep learning for
object detection and classification [8[][9] as well as their
demonstrated ability of tracking objects in image data
[LO][11] using fully-convolutional networks. We combine
this concept with recurrent layers - the ConvLSTM [12] - in
order to maintain the dynamic state of the environment and
distinguish moving from none-moving objects over time. To
the best of our knowledge there has only been one similar
approach for the detection and classification of objects in a
2D LIDAR scan using a deep learning approach by Ondruska
et al. [13][14][15]. These algorithms, however, assume either
a static sensor or do not classify the objects at all, rendering
it incompatible for our demands. Using a deep learning
approach allows us to improve the processing of noisy sensor
data, decreases manual configuration and parametrization
efforts as well as deal with arbitrary, a priori unknown robot
shapes. As an example, slight differences in the shape of
a robot over time, caused by e.g. height differences in the
source scanner, can be compensated by gathering enough
training data instead of specifying multiple different shapes
for a scan matching.

Consequently, we demonstrate how the mutual detections
are used to improve the localization estimates of the respec-
tive robots. The main contribution of the paper is:

e A deep-learning based detection module using both,

convolutional and recurrent layers for a detection, clas-
sification and pose estimation of different robot types.



e A probabilistic detection model incorporating uncer-
tainty of the relative pose measurements as well as the
current localization estimate into a combined mixture
model for an accurate and though efficient communica-
tion of relevant information through the network.

e A Monte-Carlo Localization (MCL)-based update of
the pose beliefs of measured as well as detector robot
handling unknown associations.

II. RELATED WORK

Many of the existing multi-robot localization approaches
which incorporate relative pose estimates of other robots
either assume a given detection module [4f|[16][|6] or use
straightforward methods like marker- or vision-based detec-
tion [2]][7]. Approaches for classifying objects with a 2D
LIDAR scanner can commonly be distinguished into model-
based and learning-based approaches. Specifying a model for
e.g., a subsequent scan matching for classification using the
iterative closest point (ICP) is, however, a non-trivial task due
to sensor noise and dependent on the number of classes [[17].
Traditional learning-based approaches like Support Vector
Machines (SVMs) remove the dependency on a specific
model but instead rely on the definition of specific features
[18]].

In contrast, current learning-based approaches including
Convolutional Neural Networks (CNNs) are able to learn
suitable features for object detection and classification. Af-
ter achieving outstanding scores on image classification
[190120][21]1[22]] for years, the research focus in this field
shifted towards end-to-end object detection, classification
and semantic segmentation of images. By using fully-
convolutional networks without any fully-connected layers,
networks as presented by Long et al. [§] or Badrinarayanan
et al. [23] are able to segment a complete image into different
classes, one per pixel.

In the majority of the cases, these architectures have been
applied to image or 3D pointcloud processing. Although the
data processing for these sensors is computationally much
more demanding, the task itself is less complex than it is
using 2D LIDAR data, since 2D LIDARSs only provide sparse
measurement information compared to a 3D LIDAR or a
camera. This makes it difficult to classify and track objects
relying solely on this sensor.

Ondruska et al. [13]][14][15] use similar techniques for the
detection, classification and tracking of moving objects in a
2D occupancy grid-map generated from a 2D laser scanner.
Their first approach [[13] is able to detect and track moving
objects even in occluded space using a Recurrent Neural
Network (RNN) with convolutional operations. However,
the source scanner is static, the field of view relatively
small (50 x 50 pixels) and the objects are moving with
a constant velocity. These constraints render the approach
impractical for real-world applications. The second version
of this approach is tested in a real-world scenario includ-
ing an intersection [14]. While the source scanner is still
static, the objects are now diverse in shape and movement
(pedestrians, bicycles, cars). By using a convolutional variant

of the Gated Recurrent Unit (GRU) including a bias per
neuron, the network is able to detect and classify objects.
This works only in the learned environment, since the bias
is a static memory which learns the position of an object
class in the image rather than detecting it by its shape. The
latest improvement of this system is presented by Dequaire
et al. [15], who apply it to a moving vehicle. The authors
add a spatial transformer module to the previous network
to account for the motion of the ego vehicle. The network
still detects and tracks objects but it is no longer capable
of classifying them, since the static memory approach does
not work in this case. To the best of our knowledge, there
does not exist any prior approach for object detection,
classification and pose estimation from a moving vehicle
using only 2D LIDAR data with convolutional RNNss.

For incorporating the relative pose measurements into a
collaborative localization system, the approaches from Fox
et al. [2] and Prorok et al. [24] are most relevant for
this work. Both build upon the well-known MCL as the
core algorithm and expand it to be able to process mutual
detections. The approaches mainly differ in the way the
particle set is transformed and communicated through the
network. While Fox et al. [2]] use density trees, Prorok et al.
[24]] propose a cluster-based approach. Both, however, do not
address the problem of data association, i.e. they assume the
identity of the detected robot to be known which can rarely
be met when basing on 2D LIDAR sensors.

III. MUTUAL DETECTION

Interpreting the raw data of a 2D LIDAR is a challenging
task for humans as well as machines. We therefore transform
the output of the sensor into a 2D occupancy grid-map.
For simplicity we only label occupied (1) and free (0)
cells. Traditionally unknown space is labeled as well in
an occupancy grid-map, but experiments with and without
unknown space have shown that the unknown space does not
increase the performance of the system significantly while
requiring an expensive ray-tracing for each occupied cell
[25]]. The unknown space is therefore neglected in this work.

A. Detection and Classification

In order to estimate a position for each robot, as well
as classify its type, a fully-convolutional network [26] is
introduced. This allows the network to maintain spatial
information from the input and project it to the output.
This property is crucial for enabling an accurate position
estimation. The dimensionality of the input is nxXnx1, where
n is the size of the map, calculated from the laserscan in both
x, and y dimension. The detector robot R, is located at the
center of the map to allow a full 360-degree representation
of the robot’s surroundings, independent from the robot’s
angular sensor range. The output n X n X (¢ + 1) maintains
the height and width (n) of the map while increasing the
frame-dimension depending on the number of classes (c).
The output therefore maintains a map for each robot type as
well as one for the rest class (everything else). The position
of each robot in the output is marked by a filled circle around
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Fig. 1: The architecture and in-/output of the developed CNN/ConvLSTM network featuring end-to-end object classification

and position estimation.

the actual robot position, large enough to overlap with the
robots’ scan points. An example for an input and output of
the network for two robot types is shown in Fig. [I] together
with the network’s architecture.

Detecting a robot with a e.g. rectangular shape and dis-
tinguishing it from a static box is hard while it is not
moving. But since the pose estimate of each robot is only
updated when it is moving, we do not need to detect
non-moving robots. Therefore, we use ConvLSTMs, which
maintain information in the network over time, in order to
track moving robots. ConvLSTMs are able to represent the
dynamic state of an object internally [14]] and are there-
fore suitable for detecting dynamic objects. We use stateful
LSTMs, i.e. LSTMs where the state at time ¢ depends on
the previous state t — 1. This allows us to train the network
using consecutive scans without resetting the internal state of
the network after each sample. The network is thus able to
increase the detection and classification performance, since
a robot generally stays within its receptive field in two
consecutive scans due to its low velocity (1 — 2m/s) in
combination with the sensors frequency (10H z). It further
enables the network to process data from a moving ego-
vehicle without processing its velocity information explicitly
because it is able to maintain an odometry-like estimate
for the ego-vehicle internally. This is demonstrated by the
experiments conducted in section

The first part of the network is an encoder-decoder ar-
chitecture similar to the one presented by Badrinarayanan
et al. [23]] for end-to-end pixel-wise classification of images.
These layers are responsible for learning features for the
classification of robots. The following ConvLSTMs then
process these features in order to maintain the internal state
of the robot and track its position over time. A convolutional
layer with a softmax activation finally outputs the position
probability for each robot hypothesis.

B. Pose Estimation

As shown in the previous part of this work, the output
of the network can be viewed as a map with multi-modal
gaussians at the detected robots’ mean position estimate. As
a straightforward approach for estimating multiple position

hypotheses for each robot class, we therefore use a standard
hierarchical clustering algorithm. The two-dimensional out-
put array for each class is clustered into r different clusters,
where only those cells exceeding a defined threshold s are
considered. Afterwards, each cluster is processed separately
and a mean position as well as a probability p, for the cluster
is generated based on the number of points detected for this
hypothesis, and the networks estimated probability for each
of these points.

A second network, trained on the output of the classifi-
cation network, is used in order to estimate an orientation
for each cluster in each robots’ output. For each hypothesis
in a robots’ output, a map around the estimated position is
extracted and used as an input to the orientation network.
The architecture is composed of three convolutional layers,
each followed by a max-pooling operation in order to reduce
the size of the data from ¢ X ¢ X 1 to a x 1 x 1, where
q denotes the size of the map part around the robot and
a denotes the number of possible angle values. We use a
discretized representation of the orientation, since common
robot shapes (rectangular/circular) appear ambiguous in the
scan due to their manifold rotation symmetry. The network
therefore outputs a probability distribution of the robot’s
orientation over a angles. For a predefined number of best
angular estimates ap.s; a Gaussian Mixture Model (GMM)
is created with component probability w; depending on the
networks probability output for the respective angle.

C. Measurement Representation

With the combined position and orientation estimation, the
detection module is able to output the relative pose mea-
surement z,gm’d) of measured robot R, relative to detector
robot R, at time t. For representing the uncertainty of the
measurement, we choose the following mixture model with
model parameters 67:

N
m,d 2 m,d
p(Zt( ) |9t):pdz wip(z,g ) | pi, i) +prp. (1)
i=1
Herein, pg is the detection confidence describing the
probability that we actually detected a robot of type R,,.



Additionally, the probability of a false-positive measurement
Dyp 18 incorporated. This parameter is constant and extracted
from the learning phase of the network in the specific
environment. The core of Eq. is then a GMM which
models the spatial uncertainty of the measurement with
mean pu, covariance Y and weight w of each component
of the GMM and by usrn% the Gaussian probability density
function (PDF) in p(z o | pi, 2;). The advantage of using
a mixture model compared to non-parametric approaches
(like e.g. density trees) lies in the low amount of data
needed to describe the measurement distribution while still
being able to approximate relevant distributions with an
appropriate accuracy. This is particularly significant since we
need to communicate the measurement data over the wireless
network as described in the following section.

IV. CLOUD-BASED COLLABORATIVE
LOCALIZATION

This section presents the integration of the relative pose
measurements into a collaborative localization system in
order to improve the localization of the robots. The approach
builds upon our cloud-based multi-robot navigation system
presented in [27] where each robot is connected to the
navigation server enabling the possibility to share knowledge
among the fleet as well as to exploit the massive computa-
tional resources in the cloud for remote computations.

From the localization perspective, each robot runs its own
long-term SLAM module providing localization information
for its local navigation system based on its on board 2D
Lidar and odometry data. The robots further share detected
map changes with the map server in the cloud. The map
server fuses the incoming map information into a consistent
global map which is then distributed to the robots in order to
increase the robustness and precision of the long-term SLAM
in changing environments, see [1] for detailed information.

Within this work and in contrast to [|1]], an approach similar
to [28]] is used for long-term SLAM where MCL on a dual
layered map serves as the core localization algorithm. As in
MCL, the belief about the 2D pose z; (position + orientation)
of the robot is approximated with a set of particles:

Zw[k]é(

where ¢ is the Dirac function, mgk] the particle’s sample of

the state space and wgk] its (importance) weight. To update
the pose belief at time ¢, the particles are sampled from
the motion model based on current odometry information
and subsequently weighted based on the current sensor
observation z; and the observation model:

bel(x)

z) @)

wi = p(z | 2fY). 3)

Following [2], the relative pose measurement zt(m’d) can

be can incorporated into the pose belief of R,, with:
bel(x,(fm)) —
pel(al™) [ plaf™ | ™2l bel(al®) def®. )

Due to its symmetry, Eq. @) can also be used to update the
pose belief of R; just by sw1tch1n respective terms. The
detection model p(mtm) | ztm ™) xtm)) can be derived by
transforming the relative pose measurement model given in
Eq. (I) into the global frame using the pose xt ) of Ry:

p( (m) | Z(m d) gd)) _ p(zgm,d) | 9*) (5)

where 6 are the transformed model parameters, i.e. (; =

T(x; (d ))u, and 3; = T'(z (d))EiT(x,gd))T, given the transfor-
mation matrix T(mgd ) based on the pose of Ry.

For realizing the pose belief update of Eq. @), R,
needs knowledge about 0; and bel(z:(d)) (i.e. the particle
set). However, communicating the particle set through the
wireless network is inefficient, especially when using large
particle numbers typically needed when dealing with highly
noisy sensor data. Moreover, it would imply multiplicating
two particle sets in Eq. @) which cannot be done straight-
forwardly. Instead, we approximate bel(:cgd)) with a more
memory-efficient representation in terms of a GMM:

ijp

The computation of the GMM parameters Qt(d)) from the
particle set is carried out using an Expectation Maximization
(EM) algorithm as in [29]. In our experiments, we found that
in most situations the particle set can be well approximated
with a GMM containing only few components supporting
the usage of the GMM as both, an accurate and compact
representation for this particular purpose.

With Eq. (3) and (6), we can now compute the integral
in Eq. @) according to:

/ p(al™ | 2D D) bel (D) dz®

bel(zi") = p(x, | 67) = " iy S5, (6

_pdzzwlajp |,ut,]7 ,j)+pfp (7)
=1 j=1
T(u)EiT ()" + ¥;. In the following, we use ©; to

describe the resulting parameter set from Eq. (7).
Updating the particles of R, then simplifies to inserting

the respective particle pose xL’“](’”) into Eq. to compute
its weight:
wFm) — ( (k] (m) | ©)

—deZw”p @1 | i g, Big) + prpe (8)

1=1 j=1

Reversely, for updating the pose belief of Ry, R,, only
needs to communicate back its current pose belief in GMM
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Fig. 2: Schematic illustration of collaborative localization with unknown associations.

representation. [?; can then also apply Eq. to its particle
set.

So far, we assumed that we have knowledge about the
identity of R,,. However, clearly identifying the robots of
the fleet based on 2D LIDAR data would require each
robot having an unambiguous, clearly distinguishable shape
with respect to the other robots. This is never the case in
homogeneous fleets. Moreover, also in heterogeneous fleets,
most robots commonly appear similar due to the currently
predominate rectangular or circular shape of most mobile
robots. To resolve this issue, we need to deal with data
association, i.e. finding the robot in the fleet which was
detected. In our cloud-based architecture, this task is carried
out on the cloud server. Once a detection is received from
R, the cloud server requests the GMM-based pose estimates
of the subset of robots 7" with the particular type that was
detected. It then computes the association probability pid="™
of robot Iz, being the one that was measured by I4:

=" = (6" | 1)
N; Ni,N;
d d d
=) Y W@ | pl, 2+ 5). )

j=1 i,j=1

where 7 is the normalizer:

Nt
Nl = <Zp¢(1v_m)> +Psp-
v=1
Each robot then updates its particles weights based on its

association probability:

w[k](Q) :p(q:m) p(xgk](q) ‘ @t) + (1 _pl(lq:m)).

a

(10)

Y

The concept for mutual localization with unknown associ-
ations including the information flow from the robots to the
cloud server and back is illustrated in Fig.

V. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the introduced net-
works and algorithms, we will demonstrate their performance
in different environments. Although a comparison to a classic
approach like scan matching would be highly desirable, this

(a) Care-O-Bot 4 (COB) (b) rob@work 3 (RAW)

(c) COB 2D LIDAR shape (d) RAW 2D LIDAR shape

Fig. 3: The two robots used for the experiments (a, b),
together with their respective shapes (c, d) as seen in a 2D
LIDAR scan.

is not a straightforward task. Unlike e.g. for the robot’s local-
ization, there does not exist a standard package for detection,
classification and position estimation available in the robot
operating system (ROS) or other open source frameworks.
Implementing and especially parameterizing an algorithm for
this specific task in order to facilitate a real benchmark is a
challenging and time-consuming task. We therefore decided
to do an in-depth evaluation of the detection, classification
and position estimation network instead, which is partially
included in this section and fully available in [25]]. The thesis
includes without limitation an evaluation of the network
architecture (FCN vs. ConvLSTM), the impact of localization
uncertainty and a detailed comparison between simulated and
real-world data.



A. Experimental Setup

The approaches presented in the previous sections are
evaluated using the real-world mobile robots, Care-O-bot ‘“
(COB, Fig. and rob@work 3| (RAW, Fig. Bbf3d).
Both are equipped with Sick S300 Professional safety 2D
LIDARs for a full 360-degree view around the robot. Apart
from testing on real hardware, we can rely on a realistic
robot simulation using Gazeb(ﬂ While in simulation, ground
truth data is available to measure the performance of the
approaches, a map-based localization system given ground
truth map data is used as the reference system in our real-
world experiments.

B. Mutual Detection, Classification & Position Estimation

For the evaluation of the detection, classification and
relative pose estimation module, two experiments will be pre-
sented, demonstrating the algorithms ability of generalizing
to different simulation environments as well as its perfor-
mance on real-world data. In both cases, the respective model
is evaluated on four different environments: a simulated room
known from the training data (A), an unknown simulated
room (B), a known real-world environment (C) and an
unknown real-world environment (D). The simulation rooms
are a machine-hall (A) and a warehouse environment (B), the
real-world environments are a large-scale industrial hall (C)
and a smaller lab (D). For both experiments, two RAWs and
a COB are used, where only the sensor data of one RAW is
evaluated. All robots, including the ego-vehicle, are moving
continuously during the experiments. The map size for the
networks input is chosen to be 224 x 224 cells/pixels with a
resolution of 0.05m, resulting in a detection range of around
5.6m.

The models used for evaluating the mutual detection,
classification and position estimation have around 125000
parameters. The data-sets used for the supervised training
of these networks consist of 21000 and 3000 examples for
simulation and real-world, respectively. They have been gath-
ered by autonomous runs through different environments.
The data was split into a train (70%) and test set (30%) used
to train the network with an Adam optimizer and evaluate
its performance. For the training of the network, a sequence
length of one was chosen in order to allow the online use
of the network at each time step of a real-time run. This
is possible, since the ConvLSTM was chosen to be stateful,
meaning that the state at time ¢ depends on the output of
the network at ¢ — 1. Additional data-sets for the evaluation
presented in this section were gathered with 3000 examples
for each environment. The data used for evaluating the
networks is therefore completely different from the training
data, although collected in the same environments. The data
gathered in the real-world for both, training and evaluation,
includes people walking around occasionally, which has not
influenced the performance of the networks in any noticeable
way.

Thttps://www.care-o-bot.de/de/care-o-bot-4.html
Zhttps://www.care-o-bot.de/de/rob-work.html
3http://gazebosim.org/
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The first test is conducted using a model trained on
data gathered from multiple different simulated environments
(including room A). The resulting data for this experiment
is shown in Fig. ] It demonstrates the model’s ability of
generalizing to different environments. When applied to an
unknown environment the model is still able to classify more
than 90% of the robots correctly (precision) while increasing
the detection rate by ~5% (recall). When applied to real-
world data, the overall performance decreases significantly,
but stays at ~50 — 60%. This shows the differences in the
robots’ shapes compared to simulated data. Generally, the
shapes are very similar, since the simulation data is recorded
using a 3D simulation of the robots’ detailed CAD files. In
real-world, however, sensors and enclosure parts may not
be mounted 100% accurately. Additionally, small gradients
or irregularities of the floor can lead to minor tilts of the
robot and its sensor, which itself leads to a different shape
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of the detected robot. Although this result is not yet sufficient
for real-world scenarios, it demonstrates its potential to
generalize in parts even to real-world applications. The mean
position error of the relative pose measurement is ~10cm for
both simulated and ~25c¢m for the real-world environment.
While the real-world error is acceptable, the simulation error
is comparable to map-based localization methods, especially
when taking the robots’ diameter (~60 — 80cm) into account.

Due to these limitations of the simulation model when
applied to real-world data, we additionally trained the model
on room C in order to adapt it to real-world data. The results
for this experiment in Fig. [5] show that the performance on
the known real-world room C increases significantly. The
precision is now almost equally high as the precision of the
previous model on known simulation data (room A). The
performance on room D increases as well but there is still a
big gap to the known data from room C. We theorize that the
reason for is the insufficient amount of real-world data, since
the model is only trained on one real-world environment
compared to four different simulated rooms before. The
performance on the simulated data decreases on the other
hand since the model adapts to the real-world data.

For a more detailed evaluation of the robot detection,
classification and position estimation module, we refer the
reader to [25]].

C. Mutual Localization

Our final experiment aims at evaluating the impact of the
mutual detections on the localization accuracy. We inves-
tigate a scenario where a robot equipped with noisy, low-
cost sensors operates in a sparsely structured environment
together with multiple robots equipped with more sophisti-
cated sensors. Since the performance of the detection and
classification network in the real-world has already been
proven in section this scenario is set up in simulation
in order to have an accurate ground truth measure of the
robots’ poses. During the experiment, three COBs and one
RAW navigate to random goals in a squared, empty room for
about 450 seconds (~4500 data samples). In order to simulate

the low-cost robot, we restrict the sensor range of the RAW’s
laser scanner to 5m and increase the simulated noise on the
range measurements as well on its simulated odometry.

The results are visualized in Fig. [§] where the RAW’s
translational localization error is depicted for two configura-
tions, with and without mutual localization (left), together
with the average error in translation and rotation (right).
Each robot starts in a corner of the room, therefore being
well localized based on scan matching against the map.
Once the RAW drives into the center of the room, after
~40 seconds, the localization without the mutual detection
decreases significantly due to the accumulated uncertainty
of the odometry data. The localization including detections
from other robots, however, is significantly more stable. The
difference is especially distinct in the time between 100 and
150 seconds, where the solely map-based localization fails
due to the poor sensor setup of the robot. The mutual local-
ization on the other hand is able to decrease the localization
error to less than 5¢cm. This behavior continues throughout
the entire data-set, leading to a decrease in mean translational
error by ~63% to ~28cm.

VI. CONCLUSION

In this paper, we presented a novel approach for mutual
robot detection, classification, and relative pose estimation
using a network with combined convolutional and ConvL-
STM layers which outputs relative pose measurements in
terms of probabilistic mixture models. These measurements
were then integrated into an existing cloud-based collabo-
rative long-term SLAM to enable mutual localization for
a heterogeneous mobile robot fleet. In our experiments,
we demonstrated that the algorithm is able to accurately
detect and classify robots with different shapes while further
estimating a relative pose of them in simulation as well as
real-world scenarios. We further showed that the localization
accuracy of a robot equipped with noisy sensors increased by
63% when operating in the same environment with multiple
robots equipped with more sophisticated sensors.

Future work will deal with solving the ‘kidnapped robot’



as well as global localization problem by using the mutual
detections and sampling particles from its measurement
model. Furthermore, we will investigate the behavior of the
mutual localization system for larger fleet sizes and in real
world scenarios.
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