
Technische Universität München
Lehrstuhl für Entwurfsautomatisierung

Design Automation for Continuous-Flow
Microfluidic Biochips

Tsun-Ming Tseng

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und
Informationstechnik der Technische Universität München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. sc. techn. Gerhard Kramer
Prüfer der Dissertation: 1. Prof. Dr.-Ing. Ulf Schlichtmann

2. Prof. Tsung-Yi Ho, Ph.D.

Die Dissertation wurde am 19.01.2017 bei der Technische Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik
am 03.08.2017 angenommen.

Abstract

Continuous-flow microfluidics has evolved very rapidly in the last twenty years. Biochem-
ical applications can be performed in parallel and automatically on continuous-flow microfluidic
chips, by which more precise results with higher throughput can be achieved. To date, most
continuous-flow microfluidics are still designed manually, which is time-consuming, error-prone,
and especially impractical for large-scale-integration.

Design automation researchers started to develop design automation tools for continuous-
flow microfluidics about ten years ago. Some of these are front-end tools, which scheduled bi-
ological operations from assay protocols and allocated these operations to microfluidic devices.
Some others are back-end tools, which performed automatic device placement and micro-channel
routing. As new on-chip components, e.g., sieve valves, and new architectures, e.g., a homo-
geneous valve-centered architecture, are continuously invented and adopted, design automation
tools also evolve accordingly over time.

This dissertation first provides a brief review of design automation research for continuous-
flow microfluidics over the last decade. In this review, a detailed description is given for the
microfluidic architecture and the general topics of front-end as well as back-end research in design
automation field. Selected research results are then introduced according to their appearance
over time, which also matches the general trend of research topics from front-end to back-end.
The main body of the dissertation presents new research results that cover four topics in four
chapters: temporary caching of fluids, sieve valve exploration, synthesis for reconfigurable chips,
and the layout generation tool Columba.

i

Contents

1 Introduction 1

2 Background 8
2.1 Structure of Continuous-flow Microfluidics 8
2.2 Research Field: Front-End . 11
2.3 Research Field: Back End . 13

3 Current Status of the Design Automation Research for
Continuous-Flow Microfluidics 16
3.1 Pioneers: From Digital Circuits to Microfluidics 16
3.2 Top-down Synthesis for Continuous-Flow Microfluidics 22
3.3 Physical Design for Continuous-Flow Microfluidics 23
3.4 Testing for Continuous-Flow Microfluidics 24

4 Temporary Fluid Storage: Flow channel 26
4.1 Mathematical model for channel caching and storage assignment . . 27
4.2 Model reduction . 33
4.3 Storage assignment . 37
4.4 Experimental results . 40

5 Sieve Valve and Execution Limitations 43
5.1 Mathematical model for washing behavior and specific execution lim-

itations . 45
5.2 Experimental results . 48

6 Synthesis for Reconfigurable Microfluidics 53
6.1 Valve-centered Architecture . 54
6.2 Dynamic Device Mapping . 55
6.3 In Situ On-chip Storages . 58

ii

6.4 Routing-convenient Mapping . 60
6.5 Assurance of Fluid Paths to Chip Boundaries 63
6.6 Valve-actuation-aware Routing . 66
6.7 Overall Algorithm . 71
6.8 Experimental results . 73

7 Columba: Co-Layout Synthesis for Continuous-Flow Mi-
crofluidic Biochips 87
7.1 Global Layout Generation . 89
7.2 Handling Pin Constraints . 95
7.3 Port Module Restoration . 98
7.4 Refinement . 99
7.5 Experimental results . 99

8 Conclusion 106

iii

dedicated to my parents, Hsi-Kuo Tseng and Pao-Chin Huang:
thank you for supporting me to pursue my dream;

and dedicated to Mengchu:
I love you.

iv

Acknowledgments

I would like to thank Bing Li. I was lack of confidence when I was a master student. It
was him who encouraged and provided me research opportunities. I learnt most of my research
abilities from him. For an inexperienced researcher as I was, doing research was like falling into
a dark forest surrounding by fog – everything was so uncertain and there was no clue to find an
exit. I am extremely lucky to have him accompany me, guide me, and train me not to fear the
darkness.

I would like to thank Prof. Tsung-Yi Ho. He brought me to microfluidic design automa-
tion field. He knows the value of my work, and always help me to promote my work.

I would like to thank Prof. Ulf Schlichtmann. He is my doctoral advisor, and the best
advisor that I can ever imagine. He gives me his all trust, so that I can concentrate on my
research. The things I’ve learnt from him are more than technical knowledge: I’ve also learnt
the way to write, to speak, and even to think. I wish I can become a person like him.

I would like to thank Mengchu Li. She is always with me, and gives me advices from life
to research. Our every moment, even arguing about different research opinions, is my treasure
– I am so lucky to find Mengchu, from so many people in the world.

v

Prologue

As I was an undergraduate student, I worked on the multi-threshold complementary
metal–oxide–semiconductor (MTCMOS) power switch routing problem38, which was a typical
routing problem for digital circuits with a point-to-point distance limitation. After graduation, I
went to Germany to pursue my master degree in Technical University of Munich (TUM), where
I worked on a printed-circuit-board (PCB) routing problem39,40, which was a single-layered
routing problem with length-matching constraints.

I then became a doctoral candidate in December 2013. In addition to my main research
topic – design automation for continuous-flow microfluidics, I keep doing research on design
automation for electronic circuits: I have improved my method for the PCB routing problem41,
and started to work on layout generation for radio frequency integrated circuits (RFICs)45,46.
The research experience from working on various topics significantly broadens my view, and has
become a corner stone for my research in design automation for continuous-flow microfluidics.

vi

1. Introduction

One of the most fundamental demands of humans is to live a long life, and one of

the biggest obstruction of living a long life is disease. Diseases can be caused by

external and internal factors. With the development of modern medicine, people

have learnt more and more about external factors such as viruses and bacteria,

and come up with many effective methodologies to deal with them. But many

dangerous diseases, including cancer, are caused by internal factors that we are

not very familiar with: genes.

A gene is made up of nucleotides and is a protein coding sequence of DNA.

The human genome consists of tens of thousands of genes, encoding the genetic

information, which guides our body to make all the needed proteins that enable us

to live and grow. By understanding genes, people can understand how our body

works, and figure out the factors that prevent our body from working properly.

In order to decode the genetic information, many researchers have devoted

themselves to genetic analysis such as DNA sequencing, polymerase chain reaction

(PCR), reverse transcription polymerase chain reaction (RT-PCR), etc. For exam-

ple, in 1990, the U.S. government launched the Human Genome Project (HGP),

which is the largest undertaking in the history of biological science36. The goal of

this project was to determine the sequence of nucleotides in our genome, and to

1

Figure 1.1: Cost change per human genome.26

identify their locations as well as their functions. HGP was declared complete in

2003, coming up with the sequence of the majority of the human genome. This

project spent 13 years along with 3.8 billion dollars27, since most of the tech-

nologies then were low throughput and extremely cost-prohibitive. As shown in

Figure 1.1, in 2001, the 11th year of HGP, it cost about 100 million dollars to

sequence the genome from one single person. This cost decreased over time: from

2001 to 2007, the speed of cost reduction basically followed the Moore’s Law.

Then a sudden drop of the cost began in early 2008: the cost decreased with a

dramatic speed and after seven years, in 2015, it cost only less than 2000 dollars

2

to sequence one human genome.

This sudden drop owes to a technology evolution, according to the U.S.

National Human Genome Research Institute (NHGRI)26. Before 2008, DNA

sequence was generated using Shotgun sequencing method and capillary-based

instruments, which was also referred to as the first-generation sequencing techno-

logy. Beginning from January 2008, the second-generation sequencing technology

has been applied to generate DNA sequence. The second-generation sequencing

technology includes a variety of methods developed by different groups and com-

panies, e.g. Illumina dye sequencing, by Illumina, Inc, ABI SOLiD sequencing,

by Life Technologies, 454 sequencing, by 454 Life Sciences, etc. One thing these

different methods have in common is that they all are based on the same platform:

microfluidic biochips.

A microfluidic platform or microfluidic biochip comprises an easily combin-

able set of microfluidic devices, which can be treated as mini-platforms for basic

biological operations such as fluid transportation, fluid metering, fluid mixing,

etc21. Instead of discrete cumbersome laboratory instruments, these microflu-

idic devices are connected with each other or even integrated monolithically to a

single chip, and can be automatically controlled by customized software. Thus,

microfluidic platforms enable the miniaturization, integration, automation, and

parallelization of biological assays, and have advantages over conventional labora-

tory methods in high throughput processing, cost-saving, ease of controlling and

reliability.

Besides DNA sequencing, microfluidic biochips are also widely applied to

other gene-analysis assays including single-cell isolation 19 50, chromatin immuno-

precipitation51 52, polymerase chain reaction (PCR)4 13, etc. Among different

branches of microfluidic technologies, continuous-flow microfluidic biochip is the

3

Figure 1.2: A typical workflow for current single-cell cDNA synthesis and sequencing.28

mainstream approach due to its ability of precise control5. Figure 1.2 shows a

typical workflow for current single-cell cDNA synthesis28, in which various ba-

sic biological operations including cell loading, cell capturing, washing, staining,

imaging, cell lysis, reverse transcription (RT), and amplifying are executed in

one single microfluidic platform: the Fluidigm’s C1 Single-Cell Auto Preparation

System8, which applies continuous-flow microfluidic technology.

Most continuous-flow microfluidics are application specific: the manipu-

lation of bioassay protocols usually requires a new design of the chip. Since

continuous-flow microfluidics have a multiple-layered structure with complex in-

teractions among microfluidic devices, the design task becomes a heavy burden.

The current mainstream design method is to draw the chip layout manually by

drawing tools such as AutoCAD. However, manual design is error-prone, time-

consuming, and often does not yield optimal results. Designers need to be ex-

tremely careful and to be experts in both biology and engineering. It is common

for a specialist to spend several weeks or months to design a single chip with fewer

than 100 microfluidic devices. The heavy design burden also becomes an obsta-

4

Figure 1.3: Optical micrograph of the microfluidic chip integrated with thousands of valves and 256
chambers.35

cle to large-scale integration. The first large-scale integration on continuous-flow

microfluidics was proposed in 200235, with thousands of micromechanical valves

and hundreds of individual addressable chambers. As shown in Figure 1.3 , the

proposed chip had a homogeneous structure to alleviate the design effort, which

however limited the functionality of the chip. In the last decade, despite the rapid

evolution of continuous-flow microfluidic technology, large-scale integration has

remained a theoretical target.

5

Also in the last decade, several design automation engineers, who used to

focus on the design automation for electronic chips, began to pay their attention to

the design automation for microfluidic chips. With their experience in large-scale

integration and chip design, design automation engineers have proposed a series of

automatic synthesis methods for microfluidic designs, aiming to solve many practi-

cal concerns including the scheduling of basic biological operations23 24, mapping

operations to microfluidic devices14, chip layout generation47, reliability42 and

testing12 of the chip. The systematic research methods inherited from electronic

engineering enable this new field to grow fast, and people are getting close to a

design automation solution to the microfluidic bottleneck.

As research continues, the main challenge in design automation for microflui-

dics becomes the knowledge gap between biology and engineering. Continuous-

flow microfluidic biochips and biological assays have many unique properties,

which cannot easily be formulated as classical problems in electronics engineering.

Before we can automatically generate a continuous-flow microfluidic design that

can be directly applied to bioassay execution, there remain a number of practical

concerns to be dealt with.

In addition to demonstrating my achievement in my research field, another

main target of this dissertation is to provide a review about the current design

automation progress for continuous-flow microfluidic biochips. I will give an in-

troduction to the most influential works proposed by other research groups in

this field, and discuss about their contributions as well as their inadequacies in

Chapter 3. From Chapter 4 to Chapter 8, I will discuss my research. I aim to

work out an automated complete design methodology that covers both front-end

and back-end design of continuous-flow microfluidics. I have proposed high-level

synthesis solutions including scheduling and operation-device mapping, taking

6

consideration of realistic concerns such as extended microfluidic component li-

brary, intermediate sample caching, and operation execution limitations14,43. I

have also proposed the first top-down synthesis methodology for reconfigurable

matrix-shaped microfluidic structure, by proposing a dynamic device mapping

concept42,44. For the mainstream continuous-flow microfluidic structure, I have

developed the first automatic co-layout synthesis tool named Columba47, which

takes net descriptions as inputs, and synthesizes the layout of both control and

flow layers simultaneously. The output of Columba is an AutoCAD-compatible

design, which is ready for mask fabrication.

7

2. Background

2.1 Structure of Continuous-flow Microfluidics

Current design automation research for continuous-flow microfluidics deals with

microfluidics based on multi-layered valve technology48, which is typically fabri-

cated using Polydimethylsiloxane (PDMS) material. In such chips, continuous

flows are generated by external or internal pressure sources through microchan-

nels. These channels are distributed to different layers for the execution of differ-

ent tasks: channels, through which reaction samples and reagents are transported

and operated, are called flow channels; and channels, through which fluid pressure

or gas pressure is transported, are called control channels. The layer, where flow

channels are fabricated, is called flow layer; and the layer, where control channels

are fabricated, is called control layer.

The precise control of fluid transportation in a chip is realized by valves. A

valve consists of channel segments from both flow layer and control layer, which

are separated by a membrane. The flow channel segment of a valve has a rounded

profile, so that it can be completely blocked by the shape change of the membrane.

Figure 2.1(a)(b) shows the structure of a push-up valve, where the flow layer is

fabricated over the control layer. We call a valve ”open”, when no pressure comes

through the control channel segment of the valve. In this situation, there is no

8

(a)

(b)

open

flow layer

control layer

pressure

valve fluid

membrane

(c) (d) (e)

flow channel

control channel

flow layer

control layerclosed

Figure 2.1: Structure of: (a) an open push-up valve. (b) a closed push-up valve. (c) a four-end
switch. (d) (e) different flow paths formed by different valve status.

shape change of the membrane, and fluids can pass through the corresponding flow

channel segment without obstruction, as shown in Figure 2.1(a). But if sufficient

pressure is applied through the control channel segment to the membrane, the

membrane will deflect upwards, and thus block the path in the corresponding

flow channel segment so that the valve is ”closed”, as shown in Figure 2.1(b). The

actuation of valves determines the fluid direction when two flow channels cross.

For example, Figure 2.1(c) shows the structure of a typical microfluidic switch

that guides fluid transportation. This switch consists of two crossed flow channel

segments and four valves, each of which is connected to a control channel. By

applying pressure to two of the four valves through different control channels,

different flow paths can be formed as shown in Figure 2.1(d)(e).

Flow channels and control channels form not only platforms for fluid trans-

portation, but also platforms for fluid operation. Figure 2.2(a) shows the structure

of a rotary mixer, which is the platform for the execution of mixing operations.

Mixers are widely applied in many applications such as PCR16 and cell lysis51.

In this structure, a flow channel segment is connected end to end to form a ring.

On the top side of this ring, there is a group of valves that are connected in series

9

(a)

pump

valve
flow channel

control channel

L

W

(b)
Figure 2.2: Structure of: (a) a rotary mixer. (b) a reaction chamber for volume metering operation.

and share the same pressure source. These valves form a peristalsis pump: when

the control channel connected to these valves is inflated, the valves will be closed

one by one from left to right, generating a clockwise flow; and then the channel is

deflated, which again opens the valves one by one from left to right, sucking the

fluids clockwise and thus forming the circulation. As the peristalsis pump enables

the rotary motion of reagents and samples inside a ring, the mixing efficiency is

significantly enhanced compared with conventional dilution.

Another important microfluidic component for operation execution is a re-

action chamber, which can be applied in a variety of applications such as single-

cell isolation20, mixing50, amplification49, neutralization19 and cell culturing9.

Figure 2.2(b) shows the structure of a reaction chamber for volume metering

operation, which is a basic microfluidic operation that separates a specific volume

of fluids from a large amount of samples or reagents. This reaction chamber is

constructed with one flow channel segment and two valves. By controlling the

width W of the flow channel and the distance L between the two valves, fluids of

volume W × L can easily be separated.

In this dissertation, we refer to microfluidic components fabricated for the

execution of operations, such as mixers, and reaction chambers as microfluidic

devices, sometimes devices for short.

10

mi : mixing

wi : washing

hi : heating

: basic operation

immediate
execution:

mutual
exclusion:

: dependency

: : parallel
execution

m1

PMMA formaldehyde+glycine

NP40 buffer

m3

MNase

m4

SDS+EDTA

m5

Rabbit IgG {anti-H3K4m3/

w2

m6

w3

m7

w4

m8

w1

m2

beads
DPBS+cells+

w5 w6 w7

h1

h2 h3 h4

DPBS/PIC

DPBS/PIC+ DPBS/PIC+

anti-AcH3}

Figure 2.3: Protocol of a chromatin immunoprecipitation (ChIP) application.14

Besides channels and valves, a continuous-flow microfluidic biosystem may

also consist of other accessory components such as heating pads16, and external

laboratory apparatus such as themocyclers51 and microscopes55. But the core of

the design automation technology for continuous-flow microfluidics still focuses

on the usage and arrangement of on-chip resources. This can be generalized as

two research fields: front-end research and back-end research.

2.2 Research Field: Front-End

Most continuous-flow microfluidics are application-specific, which means that a

chip is usually fabricated for a specific biological application. A biological ap-

plication may consist of several basic biological operations. For example, Fig-

ure 2.3 shows the protocol of a chromatin immunoprecipitation (ChIP) appli-

cation14, which can be decomposed into sequential operations including mixing,

11

washing, and heating. In this dissertation, we refer to a biological application

that a microfluidic chip is fabricated for as an assay, and we refer to the basic

biological operations that construct an assay as operations.

Front-end design automation research aims to determine the usage of on-

chip resources and provide a guidance for assay execution. Major research topics

in this field include: interpretation of assay protocols; operation scheduling &

microfluidic component mapping; and trade-off optimization.

Interpretation of assay protocols is to decompose an assay to different op-

erations and summarize all the key factors that influence the assay execution. A

proper interpretation should give a clear definition for each operation, including

its duration, type, dependency relationship with other operations, and specific ex-

ecution limitations such as immediate execution, with which sequential operations

should be executed with little transition time to prevent overreaction, mutual ex-

clusion, with which operations should not be executed in the same microfluidic

component to prevent contamination, and parallel execution, with which opera-

tions should be executed in parallel to achieve a fair comparison.

Based on the interpreted assay protocols, operations can be scheduled and

mapped to corresponding microfluidic components for execution. Specifically, the

time spent in performing an operation must match the operation duration given in

protocols, and the type of the microfluidic component that an operation is mapped

to must match the operation type. Operations that depend on the completion of

other operations must be scheduled after the completion of the corresponding

operations, and the scheduling and mapping results of an assay must not violate

its execution limitations.

Since the execution of an operation requires exclusive occupancy of its cor-

responding microfluidic component, there is a trade-off between on-chip resources

12

and execution efficiency. More on-chip resources enables higher assay throughput

and thus better execution efficiency, but also increases the design and fabrication

difficulty, since the chip area is limited. Therefore, it is essential to optimize the

usage of on-chip resources according to the need.

An important issue that must be considered in front-end research is fluid

transportation. Compared with the transportation of electronic signals, the trans-

portation of fluids is much more time-consuming. For example, it may take 5 sec-

onds for water to pass through a 100µm long flow channel segment7, which means

that in a 20mm×30mm chip, the transportation time for water between two dis-

tant microfluidic components may easily surpass several minutes. Besides, since

the volume of fluids cannot be ignored, it also raises practical concerns such as the

occupancy of flow channels, and the storage of intermediate operation products.

2.3 Research Field: Back End

Back-end design automation research, or so-called physical design, for continuous-

flow microfluidics aims to design the chip layout, including the placement of mi-

crofluidic devices, and routing of microchannels.

Microfluidic devices are execution platforms of operations. Common mic-

rofluidic devices include mixers and reaction chambers, which have relatively fixed

structures as shown in Figure 2.2(a)(b). The exact dimension of devices depends

on the volume of samples and reagents needed for the corresponding operations.

The placement problem for continuous-flow microfluidics is to determine the di-

mension, orientation and location of devices, and the routing problem is to route

the microchannels between these devices, either based on the placement result or

considered together with the placement problem.

13

As mentioned in Section 2.1, continuous-flow microfluidics consists of control

channels and flow channels. Control channels are fabricated in the control layer for

pressure transportation, and flow channels are fabricated in the flow layer for fluid

transportation. Therefore, the routing problems for continuous-flow microfluidics

can be divided into two single-layered sub-problems: control channel routing and

flow channel routing.

Control channel routing for continuous-flow microfluidics is to route paths

among valves and control inlets. In continuous-flow microfluidics, pressure is

transported from external pumps via on-chip inlet ports, each of which occupies

about 1mm2–3mm2 chip area30. Since the area of a chip is limited, the number of

inlets on a chip is limited, too. In complex designs, some valves are connected by

control channels directly to inlets, and others are connected together by control

channels to share the pressure inlets. Control channel routing problems include

determining the pressure sharing relationship among valves, and guaranteeing the

corresponding pressure paths without undesired overlapping of control channels.

Flow channel routing for continuous-flow microfluidics is to route the in-

coming and outgoing fluid transportation paths of microdevices for operation exe-

cution. In this dissertation, we also refer to the incoming fluids of a device as the

inputs of the corresponding operations, and the outgoing fluids of a device as the

outputs of the corresponding operations. In continuous-flow microfluidic assays,

operation inputs can either be pre-treated samples and reagents, or reaction pro-

ducts of other on-chip operations. Therefore, the incoming flow channel segments

of a device can either be connected to fluid inlet ports, or to the outgoing flow

channel segments of other devices. Similarly, the outgoing flow channel segments

of a device can either be connected to fluid outlet ports, or to the incoming flow

channel segments of other devices. Since the connection relationship among de-

14

vices and chip ports is usually determined before the routing process, the flow

channel routing problem concentrates on finding feasible routing solutions.

As mentioned in Section 2.1, flow channels are allowed to cross. Wherever

two flow channels cross, there must be a switch to guide the fluid direction. Since

switches consist of valves, the implementation of switches also means the imple-

mentation of extra control channels and even pressure inlets to control the valve

actuation. In this manner, the flow channel routing problem and control channel

routing problem interact with each other, which complicates the whole routing

problem.

15

3. Current Status of the Design Au-

tomation Research for Continuous-

Flow Microfluidics

In the last decade, design automation research for continuous-flow microfluidics

made significant progress. In this chapter, I would like to introduce the develop-

ment course and status of this field, by introducing the most influential work in

major research areas.

3.1 Pioneers: From Digital Circuits to Microfluidics

Though continuous-flow microfluidics is the mainstream approach in current mi-

crofluidic technology, design automation research for microfluidics first concen-

trated on another type of microfluidics: digital microfluidics32. Different from

continuous-flow microfluidics, which has a heterogeneous structure consisting of

various fixed microfluidic devices, digital microfluidics has a homogeneous struc-

ture consisting of electrodes, which form virtual devices that can be reconfigured

to change their functionality during assay execution. Due to its homogeneous

structure, digital microfluidics shows great potential of large-scale integration,

16

virtual source

I1 I2 I3 Im...

...

M1 M2 Mn...

...

D1 D2 Dn...

input operation

mixing operation

detection operation

virtual sink

...

Figure 3.1: Sequencing graph model of a biomedical assay.31

and thus attracted much design automation interest. The development of design

automation research for digital microfluidics provided valuable experiences that

were borrowed by later design automation research for continuous-flow microflu-

idics.

F. Su’s works31 32 34 from 2004 to 2006 were the most influential works in

early design automation field for digital microfluidics. This series of works pro-

posed a system level top-down design automation methodology that included the

interpretation of bioassay protocols, operation scheduling, resource mapping, mod-

ule placement & routing, and testing. It literally covered all the important re-

search topics in design automation for digital microfluidics. Although digital mi-

crofluidics has a different layout structure and fabrication technology compared

with continuous-flow microfluidics, both types of microfluidic chips perform sim-

ilar biological applications. Therefore, the front-end research problems in both

research fields are similar. Su’s work31 translated the front-end research problem

into a typical high-level synthesis problem focusing on scheduling, and applied

mature design automation techniques for digital circuits to solve the problem.

17

Complex bioassay protocols were modeled as sequencing graphs as shown in Fig-

ure 3.1. Each node in the sequencing graph represented an operation of a specific

type, and each edge that combined the nodes in the graph represented the de-

pendency between two operations. Su classified operations as three types: input

operations; mixing operations; and detection operations, and allocated these op-

erations to corresponding time slots in the execution schedule, as well as mapping

them to virtual devices re-configured at assay run time.

Although digital microfluidics varies from continuous-flow microfluidics in

chip structure and fabrication technology, the sequencing graph model Su pro-

posed to interpret complex assay protocols was widely accepted in the design

automation field for continuous-flow microfluidics. A. M. Amin’s work1 in 2007

applied the type classification concept from Su, and modified it to adapt the

properties of continuous-flow microfluidics. A. M. Amin classified the continuous-

flow microfluidic components into three types: reservoir (temporary fluid storage);

fluid functional units (abbreviated as FFU, microfluidic devices); and routing com-

ponents (valves and channels). A. M. Amin also strengthened the bonds between

operations and microfluidic devices (FFUs). Different from Su’s work, where a

new device would be configured for each operation, A. M. Amin classified the

FFUs to several types consistent with the operation types, and mapped opera-

tions to existing devices of corresponding types. Based on these settings, A. M.

Amin’s work envisioned a programmable lab-on-a-chip (PLoC) and proposed a

fluidic instruction set, called AquaCore Instruction Set (AIS), and a fluidic mi-

croarchitecture, called AquaCore, to implement AIS. A. M. Amin assumed that

there was a compiler that could automatically translate high-level assay protocols

into AIS. The comparison between the protocol of a PCR assay and its hand-

compiled AIS code is shown in Table 3.1. Similar to a computer instruction set,

18

PCR Input port ip1; PCR mixture
1. Heat the PCR mixture to Input port ip2; CE separation medium
95◦C for 5s RESULT(); dry array for final results
2. Heat the mixture to 53◦C PCR{
for 15s input s1, ip1
3. Heat the mixture to 72◦C input s2, ip2
for 10s move heater1, s1; 5s
4. Repeat the thermal cycling dry-mov r1, 20
20 times dry-label loop:
5. Send the mixture through incubate heater1, 95, 5; 6s
the capillary electrophoresis (CE) incubate heater1, 53, 15; 17s
column (5cm at 236V/cm) incubate heater1, 72, 10; 12s
6. Separate using separation dry-dec r1
medium for 180s dry-bgt loop
7. Sense the fluorescence of move separator1.buf, s2; 5s
the separated flow move separator1, heater; 5s

separate.CE separator1, 236, 5, 180
sense.FL sensor1, RESULT; 180s
}
Total time = 895s
#reservoirs =2
ASLoC area = unknown (length is 14.5mm)

Table 3.1: Comparison between source assay protocol and AIS (AquaCore Instruction Set) code.1

AIS handled one operation per instruction. For example, mix x, t requires the ex-

ecution of a mixing operation in a mixer x for t time. Fluid transportation among

devices was handled by move-abs and move instructions, which were specified

with start device, end device, transportation time, fluid volume (for move-abs),

or relative fluid volume (for move).

The AquaCore Instruction Set did not spread out in the continuous-flow

microfluidic research field, since the PLoC that AIS based on had not been in-

vented so far. The PLoC A. M. Amin envisioned in this work was a programmable

microfluidic design that could run any assay, which was supposed to be able to

19

Flow language Input Point Output Point Constraints
ISA := F in(F) out(F) in(F) = source and out(F) = sink
F := P1 → P2 P1 P2 P1! = P2

| F1 → F2 in(F1) out(F2) out(F1) = in(F2)
| F1

∨
F2 in(F1) out(F1) in(F1) = in(F2) and out(F1) = out(F2)

| F1

∧
F2 in(F1) out(F1) in(F1) = in(F2) and out(F1) = out(F2)

| F1

∨
mix(F2) in(F1) out(F1) in(F2) = out(F2)

| F1

∧
mix(F2) in(F1) out(F1) in(F2) = out(F2)

| pump(F) in(F) out(F)

Table 3.2: Language for specifying a microfluidic Instruction Set Architecture.2

reduce the design effort and enhance the productivity. However, continuous-flow

microfluidic technology is undergoing rapid development. New assays are continu-

ously introduced to this field, which require various microfluidic devices. Current

fabrication technology is not mature enough for a quasi universal microfluidic

platform integrated with most of the needed devices. Though the AquaCore In-

struction Set might be premature, A. M. Amin’s work gave a very nice introduction

of the properties and important mechanisms of continuous-flow microfluidics. The

type-classification and type-matching concept proposed by A. M. Amin set up a

framework of the design automation solutions for continuous-flow microfluidics,

and thus had significant influence on later research.

Besides front-end work, early researchers also proposed design automation

solutions to solve back-end problems, or so-called physical design problems. In

2009, N. Amin proposed a language2 to specify a microfluidic Instruction Set

Architecture (ISA). As shown in Table 3.2, the proposed language described the

desired flows for executing an assay. Each flow F was specified with a start point

in(F) and an end point out(F), and an instruction could describe either a simple

flow connecting two points (P1 → P2), or a sequential flow connecting two flows in

sequence (F1 → F2). The language was proposed to support a control-layer layout

generation tool named Micado, which was the first automated layout-generation

20

tool for continuous-flow microfluidics.

The layout generation process of Micado consisted of three phases. The

first phase required a drawing of a flow-layer layout and an ISA describing flows,

and then Micado could automatically place valves on the control layer to form

switches that guide the desired flows. Pressure sharing among valves was also

considered in this phase to reduce the number of control channels. The second

phase required the designer (user) to indicate the number and locations of control

in-/outlets on the intermediate results of the first phase, and then Micado could

automatically route the paths among the valves and the control in-/outlets. The

last phase of Micado exported a graphical user interface (GUI) for operating a

chip at run time.

As the first attempt at automating the layout design of continuous-flow

microfluidics, Micado was impressive. N. Amin offered Micado as a free AutoCAD

plug-in to bioengineers, and demonstrated its routing ability on three realistic

chips. However, Micado was not widely applied among bioengineers to alleviate

the design effort, mainly due to two reasons:

First, Micado did not provide a full solution that covered the design of both

control and flow layers, but required a fixed flow-layer layout as its input. Thus,

the placement of valves had very limited options, and the control-layer design task

might suffer from a bad flow-layer design.

Second, the proposed Instruction Set Architecture was at channel level,

which meant that the users must specify all the flows for executing an assay,

including every intermediate point of a flow path. However, for the sake of scal-

ability, current designs tend to be modularized, and channels forming fixed flow

patterns are usually treated as microfluidic devices. Describing detailed channel

behavior tends to be a burden to users.

21

Although Micado did not replace manual labor once for all, N. Amin’s work

addressed practical concerns of control layer design, and had enlightening signifi-

cance to continuous-flow microfluidic back-end research.

3.2 Top-down Synthesis for Continuous-Flow Microfluidics

From 2011 to 2013, W. H. Minhass published a series of top-down synthesis

works23,24,25, which modeled the structure of continuous-flow microfluidics and

the general characteristics of microfluidic applications in a clear manner.

In this series of works, Minhass proposed an architecture model to allocate

microfluidic devices, switches, and fluid paths; and a component model to ana-

lyze the operation phase, occupancy, and geometrical dimensions of microfluidic

devices. The model for a rotary mixer was informative and especially helpful for

later researchers. Based on the architecture model and the component model,

Minhass proposed a top-down synthesis method, which started with operation

scheduling and operation-device mapping. The result was then analyzed to gener-

ate the input netlist for architectural synthesis, which output a schematic design.

According to the schematic design, fluid transportation was scheduled and bound

to candidate flow paths. Based on the proposed synthesis method, Minhass ex-

tracted the valve actuation sequencing for executing an assay, and suggested that

valves with the same actuation sequencing could be clustered together to reduce

the number of control in-/outlets.

Although Minhass gave a nice introduction of the structure and functionality

of continuous-flow microfluidics, the proposed method was not practical enough.

In the architecture synthesis, placement and routing were separated into two in-

dividual steps. As channel crossings were not considered in the device placement

22

phase, a large number of switches can be introduced in the final layout. Redun-

dant switches could lead to redundant valves as well as control channels connected

to these valves, which were neglected in these works. Moreover, Minhass’s work

synthesized valve sequencing without the consideration of control layer layout.

Arbitrarily clustering valves could lead to heavy burden of control channel rout-

ing, since crossing of control channels must be avoided.

3.3 Physical Design for Continuous-Flow Microfluidics

Up to 2015, several approaches had been proposed for flow-channel routing of

continuous-flow microfluidics, focusing on different aspects including valve reliabi-

lity37, flow paths minimization15 and length-matching53 of flow channels. How-

ever, the above mentioned works did not take control-layer layout into consi-

deration. Once the technology scaled down and the complexity of a chip increased,

the proposed methods could lead to inevitable routing failures in the control layer.

Aware of the drawback of the separated design phase, H. Yao proposed the

first flow-control codesign methodology, which performed iterative device place-

ment adjustment to coordinate flow-layer and control-layer design54.

By taking scheduling and application mapping results as inputs, Yao di-

vided the design flow into 5 phases: 1. initial device placement, which applied

a classic simulated annealing method. 2. flow layer routing, which applied a

classic A⋆ searching algorithm. The objective of this phase was to minimize flow-

channel crossing, and thus to reduce the number of valves needed for implement-

ing switches. 3. device placement adjustment, which adjusted the placement

solutions from the previous phases. Devices would be pushed away from a con-

gestion window that contained the largest number of channel crossings, and the

23

new placement result would be fed back to the last phase. After several iterations,

when the number of channel crossings was supposed to be acceptable, the algo-

rithm would move to the control-layer design phases: 4. microvalves addressing,

and 5. control-layer routing. In the control-layer design phases, each valve was

connected to an individual port, and the escape routing for valves applied the

classic A⋆ searching algorithm. When inevitable control channel crossing (routing

failure) happened in this phase, a congestion window that contained the largest

number of failed valves would be found, and the result would be fed back to the

device placement adjustment phase.

As the first work addressing the concern of control-flow layer interaction,

Yao’s work proposed a practical design flow with solid placement and routing

methodologies. However, Yao neglected the area cost of control inlets, and did

not consider pressure sharing among valves in the control-layer synthesis. The

proposed valve addressing algorithm connected every valve to an individual pres-

sure inlet, which was unrealistic for large-scale designs.

3.4 Testing for Continuous-Flow Microfluidics

As microfluidic technology develops, concern emerges about the lack of testing

techniques to detect defective chips. Defective chips result in erroneous operations,

which may lead to failure of the whole assay. The standard testing approach for

continuous-flow microfluidics is based on visual inspection under microscopes,

which suffers from limited effectivity and low efficiency.

In 2014, K. Hu proposed the first approach for automated testing of continuous-

flow microfluidics12. In this work, Hu focused on two major types of chip defects:

block and leak, which represented disconnection of microchannels, and unexpected

24

connection of microchannels, respectively. Control and flow channels on microflui-

dic chips were modeled as logic circuits composed of Boolean gates, and the test

generation was carried out using standard ATPG tools. Hu abstracted the chip

defects as faulty behaviors of valves, and inferred the condition of valves from

external pressure sensors by measuring the pressure in microchannels. By com-

paring the actual valve condition with the expected valve condition based on the

logic circuit model, the types and positions of defects could be identified.

The main difficulty for implementing Hu’s testing methodology was the de-

sign testability. The design-for-test concept, which is already widely adopted

in the electronic chip designs, has not yet been recognized by the designers of

continuous-flow microfluidics. One of the main concerns about adopting the

design-for-test concept is the number of in-/outlets, which is typically strongly lim-

ited as a design rule owing to the characteristics of polydimethylsiloxane (PDMS)30.

To achieve the testability of valves, Hu’s design involved a relatively large num-

ber of control outlets, each of which was connected to external pressure sensors.

When designs scale up, the proposed methodology may result in increased design

difficulty.

25

4. Temporary Fluid Storage: Flow

channel

Microfluidic assays usually consist of sequential operations. Sometimes, sequential

operations cannot directly be executed after one another due to the limited number

of on-chip devices. Therefore, intermediate products from earlier operations need

to be stored. A common approach is to build a dedicated on-chip storage unit

consisting of several storage cells, which requires exclusive chip area and additional

control efforts. Moreover, a traditional storage unit has only one input and one

channel for fluid transportation, which severely hinders the execution efficiency.

I proposed a new approach for temporary storage of intermediate products

in 201543. In addition to the dedicated storage unit, I also considered flow chan-

nels as temporary caching cells. The concept is illustrated in Figure 4.1. As

shown in Figure 4.1(a), o3 takes the operation products of o1 and o2 as its inputs.

As shown in Figure 4.1(b)(c), suppose that o1 is executed in a device d1, and o2

is executed in another device d2. If o2 completes earlier than o1, the operation

products of o2 need to be stored. Instead of transporting the products to a ded-

icated storage unit, we transport them to flow channel c1, so that d2 is free to

be mapped by operation o4 for execution. Thus, the execution time of the whole

26

Figure 4.1: (a) operation dependency. (b) microfluidic structure consisting of two mixers and two
flow channel segments. (c) scheduling and application mapping results.43

assay is shortened by saving the transportation time from and to an extra storage

unit. Another benefit brought by caching fluids in flow channels is the reduction

of the construction cost of a large central storage and the connections from it to

other devices. In the proposed method, I used existing flow channels to store as

many fluids as possible. If more than one fluid needs to be stored at the same

time, a bypass channel will be created as a distributed storage cell at the spot to

accommodate the fluids. In the following, we describe our proposed method in

detail. Similar descriptions can also be found in our published papers14,43.

4.1 Mathematical model for channel caching and storage assign-

ment

We implemented our concept by constructing an integer-linear-programming (ILP)

model. The application is given as a sequencing graph (O,E), where O is the set

of nodes representing the operations, and E is the set of edges representing the

dependency of the operations. For oi, oj ∈ O, (oi, oj) denotes an edge from oi to

oj, which represents that the output of operation oi is one of the inputs of opera-

tion oj, and thus oj can only start after the completion of oi. The absolute start

27

time of the operation oi is denoted by ti and its execution duration is denoted by

ui. All the operations in the sequencing graph should be executed by a given set

of devices D. With the above settings, the constraints of our model are discussed

as follows.

1. Operation binding

Each operation in the sequencing graph should be bound to exactly one
device. To handle these constraints, we create N × M 0-1 variables si,k,
where i = 1 . . . N and k = 1 . . .M . N is the number of operations in the
application, and M is the maximum number of available devices. If the ith

operation oi is assigned to the kth device dk, si,k is set to 1; otherwise it is set
to 0. The actual values of these variables are determined by the optimization
solver for an optimal scheduling and assignment. If an operation oi must
be assigned to a device dk of a specific type, the 0-1 variables si,k should be
set to 0 for all those devices that are not of the required type. With these
0-1 variables, we can write the constraint that the ith operation should be
executed only once, or the constraint of uniqueness, as

M∑
k=1

si,k = 1, ∀oi ∈ O. (4.1)

2. Operation duration

The operation oi should have enough time to finish its execution, so that its
end time ei should be at least ui time later than its start time ti, where ui

is the duration of oi. Therefore we have

ti + ui ≤ ei, ∀oi ∈ O. (4.2)

3. Operation dependency

In the sequencing graph, an edge denoted by (oi, oj) means that oj takes
the output of oi as its input. In this situation, we define oi as the parent

28

operation of oj, and oj as the child operation of oi, correspondingly. Since
an operation can only start with all its inputs ready, a child operation will
not start until the completion of all its parent operations. Assume that the
propagation delay from oi to oj through the channel is ui,j. We can write
this dependency constraint as

ei + ui,j ≤ tj, ∀(oi, oj) ∈ E. (4.3)

This constraint is created for all the edges in the sequencing graph, so that
the operations that precede the others on a path are always executed earlier.

4. Non-interfering operation

A new operation should be executed in a free device. If a device is occupied
by an operation in progress, other operations should not be bound to this
device until the completion of the current operation. Therefore, we introduce
the following constraints on every two operations:

ej ≤ ti + Φqj,i (4.4)
ei ≤ tj + Φqi,j (4.5)
si,k + sj,k + qi,j + qj,i ≤ 3, ∀dk ∈ D (4.6)

where Φ is a very big constant, qj,i and qi,j are auxiliary 0-1 variables, whose
values are determined by the optimization solver in arranging the operations
in the devices. Above constraints ensure that operations oi and oj can only
be bound to the same device, i.e., both si,k and sj,k are set to 1, when
their execution times do not overlap each other (either oi starts after the
completion of oj, or oi ends before the execution of oj).

5. Channel conflict

The condition of channel conflict is illustrated in Figure 4.2, where oi1 and
oi2 are assigned to device dk1 , oj1 and oj2 are assigned to dk2 , and these
two devices are connected by a channel. In the case on the left hand, the
result of oi2 may contaminate the result of oi1 because the latter has not

29

Figure 4.2: Channel conflict scenarios.43

entered the device dk2 and still occupies the channel. Similarly, the case on
the right shows the mirrored case that oi2 is executed earlier than oi1 . To
avoid channel conflicts, either the operation oi2 finishes later than oj1 starts,
or oi1 finishes later than oj2 starts. If these conditions can not be met, the
operation pairs (oi1 , oj1) and (oi2 , oj2) should not share the same pair of
devices. Therefore, we can write the constraints to avoid channel conflicts
as

si1,k1 + si2,k1 ≤ 1 or sj1,k2 + sj2,k2 ≤ 1 if ei2 < tj1 and ei1 < tj2 (4.7)

where the condition after if defines the scenarios of channel conflicts shown
in Figure 4.2. The constraint si1,k1+si2,k1 ≤ 1 or sj1,k2+sj2,k2 ≤ 1 guarantees
that at least one of the devices for operation pairs is different. (4.7) can be
further transformed into

(ei2 ≥ tj1 or ei1 ≥ tj2) or (si1,k1 + si2,k1 ≤ 1 or sj1,k2 + sj2,k2 ≤ 1) (4.8)

30

and thus

∀(oi1 , oj1) ∈ E, (oi2 , oj2) ∈ E, (4.9)
tj1 ≤ ei2 + Φqj1,i2 (4.10)
tj2 ≤ ei1 + Φqj2,i1 (4.11)
si1,k1 + si2,k1 ≤ 1 + qi1,i2 , ∀dk1 ∈ D (4.12)
sj1,k2 + sj2,k2 ≤ 1 + qj1,j2 , ∀dk2 ∈ D (4.13)
qj1,i2 + qj2,i1 + qi1,i2 + qj1,j2 = 3. (4.14)

The detailed explanation of (4.9)–(4.14) is similar to the case for non-
interfering operation above and omitted for simplicity. Note here the com-
plexity of the constraints is still roughly O(N2M) because the sequencing
graph is sparsely connected.

6. Dedicated storage

In the proposed model, dedicated storages are allowed to be contructed as
well to store conflicting fluids. We maintain a 0-1 variable stok to indicate
the existence of the storage for each dedicated device dk, and relax (4.12) to

si1,k1 + si2,k1 ≤ 1 + qi1,i2 + stok1 , ∀dk1 ∈ D. (4.15)

If the solver determines to insert a storage unit at the output of dk1 , stok1
is set to 1 so that the constraint (4.15) is always met. The total number of
dedicated storages can be expressed as∑

dk∈D

stok ≤ ns (4.16)

where ns is the maximum number of available storage units.

7. Channel number

Assume that operations oi and oj have an edge in the sequencing graph,
meaning that the result of oi should be transported to oj. If these two oper-

31

ations are assigned to devices dk1 and dk2 , there should be a channel between
dk1 and dk2 . A channel can be removed to save chip area or manufacturing
effort if it is never used. We maintain a 0-1 variable bk1,k2 to represent the
appearance of the channel between devices dk1 and dk2 . This channel must
exist if there are two sequential operations oi and oj (with an edge in the
sequencing graph) bound to dk1 and dk2 respectively. The channel existence
can be modeled as

∀(oi, oj) ∈ E, dk1 ∈ D, dk2 ∈ D, (4.17)
si,k1 + sj,k2 ≤ 2bk1,k2 + qk1,k2 (4.18)

where qk1,k2 is an auxiliary variable. If both si,k1 and sj,k2 are 1 for at least
one single pair of sequential operations oi and oj, bk1,k2 must be set to 1. If
si,k1 = 0 or sj,k2 = 0, the solver has the flexibility to set bk1,k2 to 1 or qk1,k2 to
1. However, since we minimize the number of channels to reduce the cost,
in such case bk1,k2 is always chosen to be 0. With bk1,k2 , the total number of
channels can be described as ∑

dk1∈D,dk2∈D

bk1,k2 ≤ nc (4.19)

where nc is given as the upper bound of the number of channels.

8. Objective

The aim of scheduling and binding of an application is to find a mapping of
operations into given devices, subject to all the constraints described above.
The objective of the model is to minimize the number ns of dedicated stor-
ages, the number nc of channels, and the execution time T of the application,
while T is constrained by the end times of all operations as

∀oi ∈ O, ei ≤ T (4.20)

Thereafter, the complete ILP model can be summarized as follows.

32

Minimize ωtT + ωcnc + ωsns

Subject to:
Operation binding (4.1);
Operation duration (4.2);
Operation dependency (4.3);
Non-interfering operation (4.4)–(4.6);
Channel conflict (4.7)–(4.14);
Dedicated storage (4.15), (4.16);
Channel number (4.17)–(4.19);
Maximum application execution time (4.20),

where ωt, ωc, and ωs are tunable coefficients that can be changed according
to different optimization emphases.

4.2 Model reduction

Here we discuss two directions of techniques to reduce the computational runtime

of solving the ILP model. The first direction is to remove all channel conflict con-

straints created from edges that are on a path in the sequencing graph, because

these edges should be arranged along the timeline as constrained by the precedence

condition (4.3) so that channel conflicts never happen between them. The effec-

tiveness of this reduction, however, depends on the structure of the sequencing

graph.

The second direction of reducing computational runtime is to provide a

general guidance to the solver, so that a solution with good approximation can be

reached quickly. In the proposed method, we adapt the List algorithm22 to find

an initial schedule and binding. Thereafter, we use the ILP solver to refine the

initial solution gradually to find a better solution, by allowing the solver to adjust

33

: device : operation operation
dependency:

postpone

(a) (b) (c)

?

(d)

o1
o2

o3
o4

Figure 4.3: Potential conflict scenarios. (a) Resolvable conflict. (b) Crossing conflict (different
devices). (c) Crossing conflict (same device). (d) Impending inevitable crossing conflict.

the device binding of operations in a limited range, and to switch the operations

along the timeline.

The structure of the adapted List algorithm is shown in the List () procedure

in Algorithm 1. The List algorithm assigns the next operation to the dedicated

device which has the shortest length greedily. When assigning an operation to

one of the devices, we should observe the precedence rule to insert child nodes in

the sequencing graph after their parents are scheduled. To meet this requirement,

we mark the nodes whose parents have been scheduled as active in L3. In the

following loop L4–L15, the algorithm schedules these candidate operations, while

trying to reduce the chance of channel conflict.

In the greedy scheduling, different types of channel conflict might appear as

shown in Figure 4.3(a)–(d). In Figure 4.3, devices are represented by queues and

operations are represented by small circles. The execution priorities of operations

are denoted by their priorities in the queues. If two pairs of operations are arranged

as shown in Figure 4.3(a), a channel conflict would occur but is able to be resolved

by postponing the executions of the last two operations in the first device. Another

type of channel conflict is shown in Figure 4.3(b), in which the edges between the

two pairs of operations cross each other. In this case channel conflict cannot be

34

Algorithm 1: Adapted List algorithm and layer-based ILP refinement.
L1 Proc List ()
L2 repeat
L3 mark_active_operations ();
L4 while there is an active operation do
L5 oi=random_select_active_operation ();
L6 dk=check_queue_rules (oi);
L7 if dk is valid then
L8 remove_operation_from_graph (oi);
L9 append_operation (qk, oi);

L10 schedule (q1, q2,. . . , qM);
L11 else
L12 deactivate_operation (oi);
L13 continue;
L14 end
L15 end
L16 if no operation removed from graph then
L17 restore_all_operations ();
L18 end
L19 until sequencing graph is empty;
L20 end
L21 Proc Layer_solve ()
L22 for i← 1 to ns do
L23 for j ← 1 to nl do
L24 solve_ILP (Li,j);
L25 if execution time is not improved then
L26 exit;
L27 end
L28 end
L29 end
L30 end

35

alleviated by simply moving operations along the timeline, and therefore should

be avoided in the List algorithm by applying a rule: an operation can only be

bound to a device if all the children of the prior operations of its parents are

bound to devices already. For example, in Figure 4.3(b), after applying the new

rule, operation o3 cannot be bound to the device before o4, since only until all

the children (o4 in this case) of the prior operations (o1) of the parents (o2) of o3
are bound to devices already, o3 is then ready for binding. This crossing conflict

may occur not only in different devices but also in the same device, as shown in

Figure 4.3(c). Similar to Figure 4.3(b), crossing conflict happening in the same

device needs to be avoided. Figure 4.3(d) shows an impending inevitable crossing

conflict. In Figure 4.3(d), the unqueued operation with a question mark is the

child of the first operation in the first device. It is not possible to assign it to any

device without causing crossing conflict, and thus we should avoid this situation

in advance as well.

In addition to avoiding the above-mentioned crossing conflicts, we also check

whether the parents of an operation (or the children of an operation) are assigned

to the same devices, which would also result in unresolvable conflict. All these sit-

uations are checked by the function check_queue_rules (oi) in L6. Since the List

algorithm greedily inserts operations one by one, if the newly-inserted operation

violates the rules, it will be unqueued and deactivated until the next iteration.

During this process, if there is no operation eligible to be appended to a queue, a

deadlock happens. In this case, all queues are emptied and the current scheduling

is discarded. Thereafter, the List algorithm runs again with a new random order

of operation selection until all operations are scheduled.

We apply the List algorithm to produce a valid initial scheduling-and-

binding result. We then partition this result into several layers along the timeline

36

layer 2

layer 1

layer 3

Figure 4.4: Refining the greedy schedule using ILP model across layers.

and optimize each layer by applying the mentioned ILP model, as illustrated in

Figure 4.4. Starting from the first layer downwards, the ILP model is applied to

adjust the operations by 1) moving them between devices; 2) switching the order

of them along the timeline; 3) reducing the time for execution postponement.

To find a good approximation of the optimal solution, we allow the solver

to adjust the operations across layer boundaries by layer overlapping as shown in

Figure 4.4. During the iterations of optimization, the operations are pushed to

earlier execution times gradually so that the execution time of the application can

be reduced. This iterative optimization with layered schedules is summarized in

Algorithm 1 as the function Layer_solve (), where nl is the number of layers in a

partition; ns is the number of iterations. In each iteration, the layer Li,j is adjusted

according to the current schedule and processed using the ILP model as shown in

L24. The optimization process finishes after a given number of iterations or no

further improvement is made, and the currently achieved scheduling and binding

is returned as an approximation of the optimal solution.

4.3 Storage assignment

After the model is solved, the schedule and binding of the biochip is determined.

Thereafter, flow transportations should be assigned into physical cells in storage

37

Figure 4.5: Storage assignment. (a) Fluid phases. (b) Fluid conflicts. (c) Port conflict graph. (d)
Storage cell conflict graph.43

units. If two fluid samples do not have conflicts, they can share the same storage

cell by time multiplexing, just as different data can be stored in the same memory

cell at different time frames in a digital circuit.

The time which a fluid sample spends in a storage unit can be partitioned

into three phases. In phase one, it enters the storage unit, so that the duration

of this phase is the time from the device to the port of the storage unit. Since a

storage unit usually only allows one fluid sample to enter or leave due to the flow

path, only one fluid sample is allowed to be in phase one at a time. Otherwise, a

port conflict occurs. In phase two, the fluid sample occupies a cell in the storage

unit. In phase three, it leaves the storage unit, and again only one fluid sample

is allowed to use the port of the storage. Figure 4.5(a) shows the three phases of

a fluid sample occupying the dedicated storage unit, and Figure 4.5(b) shows an

example of four fluid samples directed to the dedicated storage unit but with port

conflicts.

Since two fluid samples can not enter the same storage unit if there is a

conflict at phase one or phase three, we need to find the largest set of fluid samples

that do not conflict with each other and pack them into a dedicated storage unit.

38

The conflict relation between fluid samples can be represented using a conflict

graph as illustrated in Figure 4.5(c). In this graph, a node represents a fluid

sample. If there is a port conflict between phase one or phase three of any pair

of fluids, an edge is created between the nodes. Thus the problem is transformed

as to find the maximum independent set of nodes between which there is no

edge. Since the maximum independent set problem is NP-hard, we apply a greedy

approximation algorithm17. In this algorithm, the node with the smallest degree

is selected and removed together with all other nodes connected to it. This process

is repeated until all nodes are removed from the graph, and the selected nodes

together form an independent set. For example, if we remove node 2 together

with node 1 in Figure 4.5(c), we can find the independent set containing node 2,

node 3, and node 4, the fluids representing by which will then be saved in the

dedicated storage unit.

From the independent sample set in the previous step, we need to determine

how many cells are required in the dedicated storage unit. As discussed earlier,

if two fluid samples do not occupy storage at the same time, they can reuse the

same cell in the style of time multiplexing. Similar to handling port conflicts, we

try to find the largest set of fluid samples that can share a storage cell using a

cell conflict graph, as shown in Figure 4.5(d). In this graph, an edge means that

the two fluids have some overlap in phase two, so that they should use different

storage cells. The maximum independent set problem is solved using the greedy

algorithm17 again. The result shows that the fluid representing by node 2 can

share a cell with the fluid representing by node 4, so that in total two cells need

to be built in the dedicated storage unit.

After determining the independent sets in the conflict graphs, we might

have fluid samples that cannot be saved into a dedicated storage unit due to port

39

Table 4.1: Results with storage and channel caching.43

conflict. To solve this problem, we either generate additional dedicated storage

units, or create distributed storage cells along channels directly. In the proposed

method, we use the latter method, because the number of such fluids is not large

and the distributed cells have short transportation time without the complex con-

trolling mechanism at the ports of dedicated storage units. This method can also

reduce routing challenges because fewer channels are needed to reach dedicated

storage units. The process of generating distributed storage cells is similar to the

last step in storage assignment above. We only check which fluid samples can

share a distributed cell using the maximum independent set algorithm so that the

efficiency of distributed storage cells along transportation channels is maintained.

4.4 Experimental results

The experimental results are shown in Table 4.1. The proposed method was

implemented using and tested on a computer with a 2.67 GHz CPU. Four real

biochemical cases33 and four synthetic cases, gen15–gen127, were used for exper-

40

iments. The List algorithm31, which does not consider constraints from channels

and storage, was implemented for comparison. This algorithm produced sched-

ules for the assays, to which the same maximum independent set algorithm17 was

applied to generate distributed and dedicated storage units.

The columns TL and TP are the assay execution times calculated by the

List algorithm and the proposed method. From this comparison, we can see that

the proposed method resulted in improvements in almost all assays, by 7.7% on

average. Specially for PI39 and PE55, the improvement on execution time can

reach nearly 25%.

The results of transportation channels and storage cells from the List al-

gorithm are shown in columns #chL and #stoL, respectively. The results from

the proposed method are shown in the columns #chp and #stop, respectively.

The proposed method does not require more channels or storage cells to achieve

the shortened execution time. In cases such as gen63, channels and storage cells

are reduced significantly. On average, these reductions reach 7.8% and 41.7%, as

shown in the last row of Table 4.1.

To demonstrate the effect of channel caching, a baseline method was imple-

mented. In this method, a device cannot start a new operation before its previous

output sample is taken by another device to avoid channel conflicts and thus

sample contamination. The execution times calculated by the baseline method

and the proposed method are illustrated in Figure 4.6. Clearly, the proposed

method effectively reduces the execution time of an assay by simply caching fluid

samples in transportation channels. The runtimes of solving the proposed ILP

model and the storage assignment for the test cases are shown in the column

rp(s) in Table 4.1. For the largest application with 127 operations, the runtime

is 894.31 seconds, largely taken by the ILP solver. These computational runtimes

41

Figure 4.6: Execution times of assays calculated by the baseline method and the proposed method.43

are already acceptable for an offline synthesis flow. As a conclusion, the proposed

channel caching concept and method can save both total assay execution time and

the cost of building a dedicated storage.

In this chapter, a concept to cache fluid samples in transportation channels

and synthesize storage cells considering fluid conflicts is explained. By minimiz-

ing channel conflicts and recognizing maximum independent sets, storage require-

ments are handled jointly by channels as well as both distributed and dedicated

storage cells. Results show that the execution time of the assay and resource usage

are lowered effectively at the same time.

42

5. Sieve Valve and Execution Lim-

itations

One of the most important front-end design tasks for continuous-flow microfluidics

is the interpretation of assay protocols. The current design automation approach

abstracts the protocol of an assay as a directed graph. Each node of the graph

represents an operation of a specific type, and each edge of the graph represents

the dependency between operations. With an accurate type classification strategy,

this abstraction simplifies the design process and provides a basis for scheduling

and operation-device mapping.

However, in the design automation field, there has been a misreading of

an important type of biological operation: washing. Washing operations used

to be mistaken for rinsing operations, which are performed to clean microfluidic

components to avoid fluid contamination. In fact, washing operations are widely

recognized in the biological field as a particular type of operation to extract target

particles from suspensions, which is essential in assays involving cells. The mis-

reading of washing operations resulted in the neglect of an important microfluidic

component: sieve valve.

The sieve valve is a variety of partially closed valves. As shown in Figure 5.1,

43

normal valve (open) normal valve (closed)

pressure

flow layer

control layer
substrate

sieve valve (closed)

pressure

sieve valve (open)

Figure 5.1: Difference between a normal valve and a sieve valve.

different from normal valves that can fully block fluid transportation, when a sieve

valve is closed, there remains a gap that is small enough for tiny particles and

fluids to flow away, but large enough to stop large particles such as magnetic

beads bound by molecules or cells. In this manner, targeted large particles are

concentrated or collected easily.

We introduced washing operations and sieve valves to the design automation

field in 2016, by proposing a scheduling and operation-device mapping methodo-

logy for designs involving sieve valves14. Unlike typical operation-device mapping

concepts, where operations are mapped to devices that occupy exclusive chip

area, washing operations are supposed to be mapped to sieve valves, which hardly

require any chip area and are always integrated inside devices, or near the en-

trance/exit of devices. Since a washing operation always accompanies a mixing

operation, we modeled washing operations as pre-washing or post-washing beha-

viors, which were treated as special requirements of mixing operations. The syn-

thesis results were generated by solving an ILP model, which modeled the general

characteristics of continuous-flow microfluidics, as well as the special execution

requirements.

Besides washing behavior, there could be other requirements for the execu-

tion of an operation, which used to be overlooked in conventional approaches for

assay protocol interpretation. We introduced these execution limitations in our

work and added corresponding constraints to our model: 1. Immediate execu-

tion: some operations are time-sensitive and must be executed immediately after

44

the completion of their parents. 2. Mutual exclusion: some operations must be

mapped to different devices to avoid fluid contamination. 3. Parallel execution:

some operations must be executed in parallel for fair comparison.

In the following, we describe our proposed method in detail. Similar de-

scriptions can also be found in our published paper14.

5.1 Mathematical model for washing behavior and specific execu-

tion limitations

In order to obtain an optimal bio-chip design for a bio-assay, we introduce an

integer-linear-programming (ILP) model to simulate the assay process. Accord-

ing to the number of operations in an assay, we set up in our model a number

of devices, some of which will be removed if the synthesis result shows that no

operations are executed in them. The number of such devices is adjustable and

represents the maximum number of devices that are allowed to be integrated in

the final design. For convenience, we index all the operations and devices. We

apply similar constraints as those mentioned in Section 4.1 to model the gen-

eral characteristics of bio-assay execution: operation binding, operation duration,

operation dependency, and non-interfering operation, and further consider the

washing bahaviors as well as specific execution limitations.

1. Washing behavior

We introduce two binary variables pre_wi,j and post_wi,j, to represent
whether a sieve valve needs to be integrated before or after a device i mapped
by operation j. And we introduce the following constraints on each opera-
tion that requires a pre- or post-washing behavior, to make sure that such
operations can only be bound to devices connected with corresponding sieve

45

valves:

if j requires a pre− washing behavior,

d_oi,j = pre_wi,j, ∀i ∈ DEV, (5.1)
if j requires a post− washing behavior,

d_oi,j = post_wi,j, ∀i ∈ DEV, (5.2)

where d_oi,j is an operation-device-mapping variable representing whether
operation j is bound to device i and DEV is the index set of all devices. The
above constraints mean that for an operation j requiring pre-/post-washing
bahavior, the value of d_oi,j and pre/post_wi,j must stay the same.

Now we can obtain the number of sieve valves that need to be integrated
in the same manner as we obtain the number of devices: we first set up
a variable sums to represent the number of sieve valves, then introduce
the following constraints with auxiliary variables act_svpre/posti on each
device:

pre_wi,j − act_svprei ≤ 0, ∀j ∈ preO, (5.3)
post_wi,j − act_svposti ≤ 0, ∀j ∈ postO, (5.4)

where pre/postO are the index sets of operations requiring pre-/post- wash-
ing behaviors. And we obtain sums as the sum of auxiliary variables:

sums =
∑

i∈DEV

(act_svprei + act_svposti). (5.5)

2. Specific execution limitations

The execution of biochemical operations can be limited by different reagent
properties and assay objectives, which requires synthesis adaption. There-
fore, we modify our model further and provide a synthesis method consid-
ering three commonly seen limitations.

46

(a) Immediate execution
Sometimes, the transition time between sequential operations needs to
be strictly controlled to prevent the reagents from overreaction. In
these cases, a child operation is required to be performed immediately
after the completion of its parent operation. Therefore, we introduce
the following constraints on sequential operations requiring immediate
execution:

tb = ta + dura + ttrans, (5.6)

where time variable ti represents the start time of operation i, b repre-
sents the child operation of a, dura represents the duration of operation
a, and ttrans is a constant representing the transportation time between
devices or the preparation time between sequential operations. This
constraint means that when operation a is finished, operation b will
start within an experimenter-definable transition time.

(b) Mutual exclusion
Some biochemical operations are mutually exclusive, since the contam-
ination of their reagents may cause serious errors to the assay. There-
fore, these operations are supposed to be bound to two different devices,
which can be modeled by introducing the following constraint on each
device:

d_oi,a + d_oi,b ≤ 1, (5.7)

where a, b are operations with mutual exclusion, which are prevented
by this constraint from being bound to the same device i.

(c) Parallel execution
Another commonly seen requirement in bioassays is the execution of
replicate operations, some of which are performed as control group for
reference. In order to provide a fair environment for these operations,
they are usually performed in parallel in different devices. Since time-
overlapped operations have been prevented from being bound to the
same device, we only need to ensure that these operations start at the

47

same time:
ta = tb, (5.8)

where a, b are operations requiring parallel execution.

3. Objective

The complete ILP model can be formulated as:

Minimize: te · Cte + sumd · Csumd
+ sums · Csums , (5.9)

Subject to: constraints (4.1)–(4.6) and (5.1)–(5.8), (5.10)

where te represents the duration of the whole assay, sumd represents the
number of devices that need to be integrated in the chip, and Cte , Csumd

,
and Csums are adjustable constants, which helps to control the weight of
time and area cost.

5.2 Experimental results

We implemented the proposed synthesis in C++ on a computer with a 2.67 GHz

CPU. The ILP model was solved by the ILP solver Gurobi10. To demonstrate

the effectiveness of our method, we applied our method to synthesize four bioas-

says6,51,52,55.

The first test case is a ChIP assay51 including 12 operations with 7 washing

behaviors. As shown in Figure 2.3, operation 4 needs to be executed directely

after operation 3 and operation 5, 6, 7, 8 are supposed to be executed in parallel.

The second test case is a kinase activity assay6. This case includes 22 operations

with 22 washing behaviors, two operations thereof are mutually exclusive and

should not be executed in the same device. The third test case is another ChIP

48

assay with more IPs52. 28 operations with 23 washing behaviors are included in

this assay, thereof 12 operations are supposed to be executed in different devices

in parallel. The fourth test case is a 20-single-cell mRNA-to-cDNA synthesis

assay55. This is a big test case including 80 operations with 60 washing behaviors

and correspondingly more execution limitations. If the durations of some assay

operations are not specified in the protocols, we arbitrarily assign their values

with the same value of the other operations in the assay.

Since the traditional method does not consider the integration of sieve valves

and the above mentioned execution limitations, its synthesis result has to be

refined to fit the bioassay requirements:

1. We integrate sieve valves before or after devices, which are bound by mix-

ing operations requiring pre- or post-washing behaviors according to the binding

result.

2. We refine the scheduling result by taking the execution time of washing

behaviors into account.

3. We analyze the synthesis result further, to treat the violations of execu-

tion limitations.

• For violations of immediate execution, in order not to mess up the

scheduling result, we remap the parent operation to an additional device and

reschedule it to make it complete right before the start of its immediately to be

executed child operation.

• For violations of mutual exclusion, we remap some operations to addi-

tional devices, to ensure that all operations with mutual exclusion are mapped to

different devices.

• For violations of parallel execution, suppose that the set of operations

which need to be executed in parallel is P , and opl is the operation with the

49

latest start time in P . We make opl keep its original status and remap the other

operations in P to additional devices and reschedule them to make them start

simultaneously with opl.

In the remapping process, we first check whether there is an additional

device which is not occupied during the execution time of the to be remapped

operation. If there is, we map the operation to this free device to save the area

cost. If there isn’t any free device available, we add one more additional device to

the design and map the operation to this new device.

In the rescheduling process, if operation a is rescheduled, the schedule of its

succeeding operations and the schedule of the operations that share the same de-

vice with a and start later than a will also be influenced. Therefore, we reschedule

these operations as well.

Table 5.1 shows the experimental results of our method and the traditional

method. Two groups of data are provided with different emphases on model

objective as: area-cost-sensitive and execution-time-sensitive as shown in each

row. The meaning of the columns is as follows:

#op(#w) : the number of operations and washing behaviors.

emp.: the emphasis on model objective.

#vio: the numbers of violations of execution limitations.

#do +#da: the number of devices in the original result applying traditional method

and the number of additional devices by refinement.

#so +#sa: the number of sieve valves integrated in the devices in the original result

applying traditional method and in the additional devices by refinement.

Te: the total assay execution time.

50

Ta
bl

e
5.

1:
Re

su
lt

co
m

pa
ris

on
be

tw
ee

n
tra

di
tio

na
ls

yn
th

es
is

an
d

ou
rs

yn
th

es
is

un
de

rd
iff

er
en

te
m

ph
as

es
.14

Tr
ad

iti
on

al
Sy

nt
he

sis
M

et
ho

d
O

ur
Sy

nt
he

sis
M

et
ho

d
#
op
(#

w
)

em
p
.

#
v
io

#
d
o
+
#
d
a

#
s o

+
#
s a

T
e

T
r

#
d

#
s

T
e

T
r

C
hI

P
51

12
(7

)
ar

ea
7

2+
3

1+
6

37
8

3.
07

4
5

6
30

1
1.

92
6

(4
pa

ra
lle

lI
Ps

)
tim

e
8

4+
3

1+
6

32
1

5.
05

9
7

6
23

5
4.

05
7

ki
na

se
22

(2
2)

ar
ea

1
1+

1
2+

2
75

5
30

.4
89

2
3

83
5

30
.2

63
ac

tiv
ity

6
tim

e
1

3+
1

3+
2

36
0

0.
75

9
4

6
27

4
1.

02
6

C
hI

P
52

28
(2

3)
ar

ea
11

2+
11

1+
22

17
75

30
.4

75
13

22
56

5
30

.4
86

(1
6

pa
ra

lle
lI

Ps
)

tim
e

24
6+

11
1+

22
38

7
5.

54
1

16
22

28
8

5.
43

4
m

R
N

A
-t

o-
cD

N
A

80
(6

0)
ar

ea
48

2+
38

2+
38

12
85

10
3.

04
0

21
22

17
80

10
1.

42
4

sy
nt

he
sis

55
tim

e
57

15
+

38
12

+
38

49
3

11
3.

13
5

50
46

88
10

0.
98

9

51

Tr: the program runtime.

#d: the number of devices in the result applying our method.

#s: the number of sieve valves in the result applying our method.

As shown in Table 5.1, since the traditional method hasn’t considered all

the necessary constraints during the optimization process, its original synthesis

results may bring about numerous violations of execution limitations as shown

in column #vio, which will prevent these results from being realized as practical

designs. Even though we have refined these results and make them meet the

requirements of the test cases, the refined results are still evidently outperformed

by our method.

Under consideration of washing behaviors and execution limitations, our

method maximizes the utilization of devices and sieve valves. Within similar

program runtime, our method provides results with less area cost (fewer devices

or fewer sieve valves) in all four test cases under area-cost-sensitive setting, and

shortens the assay execution time under time-cost-sensitive setting. When dealing

with the biggest test case, the area cost is nearly halved and the time cost is cut

to less than 1/5 under corresponding settings.

As a conclusion, we propose the first high-level synthesis method taking the

sieve valve into consideration with the chip area cost and the assay execution time

as the optimization objectives. A key contribution of this work was that we had

taken a closer look to the biological field, and thus modeled the scheduling and

operation-device mapping problem in a realistic manner. High-level synthesis for

continuous-flow microfluidics is still in its early stage. Compared with developing

new algorithms, it is more important to understand the demands of chip designers.

52

6. Synthesis for Reconfigurable Mi-

crofluidics

Classical continuous-flow microfluidics consists of dedicated devices and channels,

and even a slight change of operation protocols may involve the re-design of the

whole chip. The demand for reconfigurable microfluidic chips always exists35. One

of the most practical approach for reconfigurable continuous-flow microfluidics was

proposed by Fidalgo in 20117. Fidalgo proposed and manufactured a general-

purpose software-programmable chip, which had a matrix-shaped valve structure.

By controlling the actuation of valves, devices and transportation channels could

be formed at any location on the chip, which enabled the adjustment of assay

protocols without hardware modification. However, the matrix-shaped design

based on a large number of individual controllable valves, which resulted in much

control effort as well as the concern about the yield, and was thus hard to be

implemented for large-scale design.

Based on the proposed reconfigurable matrix-shaped valve structure, I pro-

vided a design-automation solution that synthesizes chips with reduced number

of fabricated valves, and balanced valve actuation to alleviate reliability con-

cerns42,44. Reliability is one of the key concerns for valve-based structures, since

53

valves may under the danger of defect after thousands of actuations1. The most

vulnerable valves are valves for peristalsis, which need to be actuated frequently

during mixing operations. Our method addressed this concern by changing the

roles of valves during the execution process, and thus balanced the valve actua-

tions.

In general, our method took the scheduling results and dependency graph

of an assay as inputs, and synthesized chips that supported microfluidic devices

of different volumes and orientations. We also routed the transportation channels

among devices and chip ports, and proposed in-situ on-chip storages to improve

the resource usage and execution efficiency.

In the following, we describe our proposed method in detail. Similar de-

scriptions can also be found in our published papers42,44.

6.1 Valve-centered Architecture

The idea of the valve-centered architecture is from a valve matrix proposed and

manufactured by Fidalgo7, in which valves are arranged regularly and every com-

ponent including flow channels in the chip is completely constructed by valves,

and the basic unit of a flow channel is a chamber encircled by four valves. There-

fore, this valve matrix is programmable just like the electrode matrix in digital

biochips. However, the number of valves implemented in the chip can be very

large, which leads to much control effort. In this paper, we transform that valve

matrix into a valve-centered architecture with virtual valves.

In the valve-centered architecture, virtual valves are arranged regularly. A

4×4 example in a coordinate system is shown in Figure 6.1(a). These valves

are virtual because some of them may not be manufactured as real valves, but

54

(a)
0 2 4 6 8

8
6
4
2
0

(b) (d)

: control / wall valve: pump valve

(c)

or

Figure 6.1: (a) A 4×4 valve-centered architecture (b) A 2×4 dynamic mixer. (c) A 4×2 dynamic
mixer. (d) Dynamic mixers of different orientations sharing the same area.44

removed after synthesis. The virtual valves can be used as wall valves to construct

the boundary walls of devices, so that devices can be formed and split up on

request dynamically during the biochemical assay. We call such kind of devices

dynamic devices.

In the valve-centered architecture, different dynamic devices can share the

same area without making any valve play the role as pump valve twice so that the

valves may not be worn out so fast. For example, two 2×4 mixers with different

orientations as shown in Figure 6.1(b)(c) can be generated in the same region at

different time as shown in Figure 6.1(d): though the two mixers overlap with each

other, their pump valves are completely different.

6.2 Dynamic Device Mapping

To generate dynamic devices at the best locations in the valve-centered architec-

ture and thus achieve the most reliable designs, we propose an integer linear pro-

gramming (ILP) model to accurately model valve actuation brought by construct-

ing dynamic devices. In this model, instead of modeling all actuation activities,

we only model the actuation activities for peristalsis, since pump valves dominate

55

the valve actuation problem. To determine the location, shape, and orientation of

each dynamic device, we introduce a binary variable sx,y,k,i as selection variable.

(x, y) is the left-bottom corner coordinate of a device to represent its location, for

example, (0, 0), (2, 0), (0, 2), (2, 2) as shown in Figure 6.2(b)(c)(d)(e); k represents

the index of a device type, i.e., the shape and the orientation of the device, such

as 1 for 3×3, 2 for 2×4, and 3 for 4×2; i is the index for the ith operation. When

a selection variable sx,y,k,i is set to 1, it means that the ith operation is mapped to

a device of type k at the location (x, y). Since each operation can only be mapped

to a single device, we introduce the following constraint

∑
x,y,k

sx,y,k,i = 1, ∀i ≤ |O| (6.1)

where O is the set of all operations in the assay.

Each time when an operation is mapped to a dynamic mixer, some virtual

valves related to this mixer will work as pump valves. With location, shape,

and orientation information of a device, the coordinates of these temporary pump

valves are ascertained. We represent the number of valve actuations for peristalsis

of each virtual valve by an integer variable vx,y and calculate it as

vx,y =
∑

xp,yp,k,i

pisxp,yp,k,i, ∀(x, y) ∈ C, ∀sxp,yp,k,i ∈ S (6.2)

where pi is a constant representing the number of actuations for a pump valve

to perform the ith mixing operation, C is the set of all coordinates, and S is a

set containing all selection variables sxp,yp,k,i that satisfy the following condition:

when sxp,yp,k,i is set to 1, a k-type mixer will be generated with left-bottom corner

at (xp, yp) to perform the ith mixing opration, and the virtual valve at (x, y) will

56

(b)
(2, 0) (2, 2)

(a)
(0, 0) (0, 2)

bi,up

bi,do
bi,le bi,ri

(d) (e)(c)

: control / wall valve: pump valve

Figure 6.2: (a) A 3×3 dynamic mixer with 8-unit volume. (b)(c)(d)(e) Four possible locations to
place a 3×3 mixer.44

work as one of its pump valves.

To avoid generating different devices in the same area at the same time,

we introduce four more integer variables as bi,le, bi,ri, bi,up, and bi,do. As shown

in Figure 6.2(a), bi,le, bi,ri, bi,up, bi,do represent the coordinates of all wall valves,

which build the boundaries of the dynamic device that the ith operation is mapped

to. By using these variables, the non-overlapping constraints for two devices

mapped by operations i1 and i2 can be modeled as

(bi1,ri ≤ bi2,le) ∨ (bi1,le ≥ bi2,ri) ∨ (bi1,up ≤ bi2,do) ∨ (bi1,do ≥ bi2,up) (6.3)

which can be transformed into linear form as

bi1,ri ≤ bi2,le + c1M, (6.4)

bi1,le ≥ bi2,ri − c2M, (6.5)

bi1,up ≤ bi2,lo + c3M, (6.6)

bi1,lo ≥ bi2,up − c4M, (6.7)

c1 + c2 + c3 + c4 = 3 (6.8)

57

in which c1, c2, c3, c4 are auxiliary binary variables, and M is a very large constant.

From constraint (6.4) to (6.7), when one of ck, k ∈ {1, 2, 3, 4} is set to 1, the

corresponding inequation becomes trivial. However, with constraint (6.8), one of

the elements in the set {c1, c2, c3, c4} must be set to 0, so that at least one of the

four non-overlapping conditions can be successfully fulfilled.

With the constraints mentioned above, we build an ILP model to minimize

the highest vx,y, which is the largest number of actuations of those valves for

peristalsis. We bound this number by an integer variable w with the following

constraint

vx,y ≤ w, ∀(x, y) ∈ C (6.9)

and the whole model can be described as

Minimize: w (6.10)

Subject to: constraints (6.1)− (6.2), (6.4)− (6.9) (6.11)

6.3 In Situ On-chip Storages

In a biochemical assay, the product of a preceding operation is usually the input of

a later operation. We call the preceding operation parent operation of the later

operation, and the later operation child operation of the preceding operation.

Correspondingly, the device performing the parent operation is called the parent

device of the device performing the child operation, and the device performing

the child operation is called the child device of the device performing the parent

operation. Because an operation can only start after all its inputs are ready, the

products of preceding operations need to be stored. A traditional practice is to

build some dedicated storages, which need extra chip area and can cause transport

58

t

sc

(a) (b)

dc

t3

oa

t1

ob

ts

oc

t3t2 dc/sc
ts

da db

da

t1

db

t2

da

Figure 6.3: An example of an in situ on-chip storage sc: (a) Scheduling result. (b) Chip snapshots
at different time.44

delay. In our method, with the valve-centered architecture, we generate dynamic

devices as in situ on-chip storages to store coming products, so that chip area

and transportation time can be saved.

An example is shown in Figure 6.3, in which the scheduling result is drawn as

a Gantt Chart, and the dynamic mixers are simplified and drawn as the circulation

flows that they contain. oa, ob, and oc are mixing-operations, in which oc takes

the products of oa and ob as its inputs and therefore oc is the child operation of

oa and ob. da, db, and dc are dynamic devices for oa, ob, and oc. sc is an in situ

on-chip storage that will be transformed into dc directly after collecting all inputs,

and thus save the transportation effort.

At time ts, oa is completed and thus the valves which have constructed da

can be treated as free valves, so that we can build sc by using some of these valves

to store the product of oa immediately. Since sc only contains the product of oa at

time ts, there is still some free space inside it. In our method, we take advantage

of those free spaces by allowing them to overlap with their parent devices. In this

example, ob is in process at time ts. Therefore, sc only occupies part of the later

dc until ob is completed at time t3. Then sc is turned to dc by using the free valves

of the former db, and the product of ob can also conveniently be led to dc for the

coming operation.

59

(a) (b)

oa

od

ob oc da
db

dd dc

< d
< d

Figure 6.4: An example of routing-convenient dynamic device mapping: (a) Sequencing graph. (b)
Device locations.44

To implement this special overlapping permission to our ILP model, we only

need to add an auxiliary binary variable c5 to constraint (6.8)

c1 + c2 + c3 + c4 = 3 + c5. (6.12)

If c5 is set to 1, c1, c2, c3 and c4 must all be 1, which permits the overlapping

between two devices. But if we do not want this overlapping to happen, we can

set c5 to 0, so that the meaning of this constraint will be the same as constraint

(6.8).

6.4 Routing-convenient Mapping

Our dynamic device mapping also guarantees the transportation paths between

parent and child devices, which brings convenience to routing. When we map

two sequential operations to two different devices, we prefer to build a direct

connection between these devices to save the transportation effort. In order to do

that, we introduce a constant d, which is the minimum dimension of all devices, as

the maximum distance between a parent device and its child device. This distance

60

dd

(a)

dbda

high-density area low-density
area

dc

dd

(b)

db

da

high-density area low-density
area

dc

< d
< d

Figure 6.5: Device location of db: (a) Without virtual boundaries. (b) With virtual boundaries.44

limit can be introduced to our model by adding four more constraints:

bi1,ri ≥ bi2,le − d, (6.13)

bi1,le ≤ bi2,ri + d, (6.14)

bi1,up ≥ bi2,lo − d, (6.15)

bi1,lo ≤ bi2,up + d (6.16)

where i1 is the parent operation of i2.

These constraints ensure that the distance between a parent device and its

child device is short enough to prevent other devices from being inserted between

them and thus obstructing their connection path. For example, as shown in Fig-

ure 6.4(a), suppose oa is the parent operation of ob, and od is the child operation

of ob and oc. If these operations are mapped to different devices, by controlling

their device locations, direct connections can be easily built between parent and

child devices as shown in Figure 6.4(b).

However, with a strict distance control, the number of potential device lo-

61

cations will be remarkably reduced, since a child device has to be put next to its

parent device. An example is shown in Figure 6.5(a), the left part of the chip is

crammed with devices while the other part is left unused. This limitation may

keep us from finding an optimal solution and lengthen the optimization process.

Since our target is to build direct connections between parent and child

devices, but not necessarily to put them close to each other, we introduce virtual

boundaries to refine our distance controlling method. The virtual boundaries of

a device circle a virtual area which is larger than or equal to the real size of this

device, which can be introduced to our model by adding following constraints:

b′i,ri ≥ bi,ri, (6.17)

b′i,le ≤ bi,le, (6.18)

b′i,up ≥ bi,up, (6.19)

b′i,lo ≤ bi,lo (6.20)

where b′i,ri, b′i,le, b′i,up, and b′i,lo are the virtual boundaries of the dynamic device

that the ith operation is mapped to.

Instead of controlling the distance between exact device locations, we con-

trol the distance between virtual areas, which can be easily introduced to our

model by replacing the boundary variables in constraints (6.13)-(6.16) with vir-

tual boundary variables. As shown in Figure 6.5(b), da and db are no longer forced

to be put together. Therefore, da can be located in the low-density area of the

chip.

We have also modified the overlapping rule of devices with our virtual-area

concept by replacing the boundary variables in constraints (6.4)-(6.7) with virtual

62

dd

db

da

dc
< d

overalpping prohibition

prohibition
device insertion

direction connection

dc dd

Figure 6.6: Guarantee of direct connection from da to db.44

boundary variables. As shown in Figure 6.6, by prohibiting the overlapping among

virtual areas instead of the exact device locations, we prevent the direct connection

between parent and child devices from being obstructed by other devices.

Since the occupancy rate of chip area varies during an assay process accord-

ing to the assay sequencing graph and the scheduling result, virtual boundaries

can be applied especially when the occupancy rate of chip area is low so that the

virtual area is not an issue for area competition among devices. As a conclusion,

the introduction of virtual boundaries provides us more flexibility of locating de-

vices and thus allows us to maximize the utilization of chip area and balance the

valve actuations even further.

6.5 Assurance of Fluid Paths to Chip Boundaries

In order to transport waste, samples, reagents, and final products, devices need

to be connected with chip ports. Since our valve-centered architecture is imple-

mented in a matrix-shaped biochip7, in which chip ports are all located at the

chip boundaries, we propose a method to assure the fluid paths from a dynamic

63

dd

(a)

db

da

dc

(b)

de

dd

db

da

dc

de
bi,le

bi,lo

lmatx − bi,ri

lmaty − bi,lo

Figure 6.7: An example of fluid path assurance for da to chip boundaries: (a) da is freely placed.
(b) da is closer to chip boundries.44

device to chip boundaries.

When a device lies in the inner part of a chip and is completely encircled

by other devices as shown in Figure 6.7(a) after the dynamic device mapping, the

path between a device and chip boundaries can be blocked. Therefore, we break

the encirclement by adding a new objective in our ILP model to draw this certain

device closer to the corner of the chip, and perform the dynamic device mapping

again.

Before introducing the objective, we first define the distance between a de-

vice and chip corners. As shown in Figure 6.7(a), the distance between da and

chip corners is decided by the horizontal and vertical distance between da and

the chip boundaries. This can be introduced to our model by adding following

64

constraints:

li,1 ≥ bi,le − q1M, (6.21)

li,1 ≥ lmatx − bi,ri − q2M, (6.22)

li,2 ≥ bi,lo − q3M, (6.23)

li,2 ≥ lmaty − bi,up − q4M, (6.24)

q1 + q2 = 1, (6.25)

q3 + q4 = 1 (6.26)

in which li,1, li,2 are the horizontal and vertical distance between a device and its

nearest chip corner, lmatx, lmaty are the horizontal and vertical dimensions of the

chip, q1, q2, q3, q4 are auxiliary binary variables and M is a very large constant.

When one of qk, k ∈ {1, 2, 3, 4} is set to 1, the corresponding inequation

becomes trivial. Taking Figure 6.7(a) as an example, the set of horizontal dis-

tances between da and chip boundaries is {bi,le, lmatx − bi,ri}, and the set of verti-

cal distances between da and chip boundaries is {bi,lo, lmaty − bi,up}. Constraints

(6.21)(6.22) ensure that we will choose exactly one value from each set to control

the distance between da and its nearest chip corner. For the sake of model reduc-

tion, we represent this distance by li,1 + li,2, instead of
√
l2i,1 + l2i,2 applying the

Pythagorean theorem. Accordingly, we modify our optimization objective:

Minimize: w + αfi × (li,1 + li,2),∀li ∈ Sd (6.27)

where α is a constant coefficient, fi is a weight factor which increases each time

the connection path problem occurs to the ith operation, and Sd is the set of

operations whose device connection to chip boundaries are blocked.

65

With this modification, as shown in Figure 6.7(b), we can obtain a new

mapping result. Based on this different request, the shape and location of our

dynamic devices are adjusted so that da is drawn near the upper right chip corner

and no longer encircled by other devices, which assures the fluid path between da

and chip boundaries and thus chip ports.

6.6 Valve-actuation-aware Routing

After the dynamic device mapping process, we route the fluid paths in the chip.

Our routing method takes valve actuations caused by path routing into consider-

ation and thus further reduces the maximum number of valve actuations and the

number of valves.

We apply Dijkstra’s shortest path algorithm and construct the cost function

according to valve actuations. In our valve-centered architecture, fluid paths can

be divided to chambers formed by valves. As shown in Figure 6.8(a), A, B, C, and

D are such chambers. By controlling the valves connected with these chambers,

namely v1, v2, v3, and v4, we can control the direction of fluids and thus build

different fluid paths.

Before we route a new fluid path, we record the number of current valve

actuations of each valve and set this valve as the cost of this valve, and we set the

initial cost of each chamber as infinity, as shown in Figure 6.8(b).

When the actuation of valve v is involved in forming a fluid path to a

chamber CH , the cost of v will be added with the cost of the chamber as the front

of the path. We define the sum of the costs as s and compare it with the cost

of chamber CH . If s is smaller, we update the cost of chamber CH with s. Our

target is to find the lowest cost of each chamber that we want to reach to from a

66

sample 0 3 0 3 3
0 0

3 3
120 120

B

A

D

C

0 3 3
0

120
0 3 3 0 3 3

0 0
3 3

120 120
3

3 126 + Cb

port

(a) (b) (c)

(d) (e) (f)

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

: chamber XX : chamber costvalue

v2

v1 v3

v4

123 + Ca + Cb 123 + Ca + Cb 123 + Ca + Cb

126 + Cb

: closed valve : open valve : current valve actuationsvalue

Figure 6.8: Update of chamber costs: (a) Target chambers. (b) Initial costs. (c) For chamber A.
(d) For chamber B. (e) For chamber C. (f) For chamber D.44

67

starting point, and thus deciding the routing path with back-tracing. As shown

in Figure 6.8(b), the cost of the starting sample port is set to 0. In order to reach

chamber A, we add the cost of valve v1 with 0 and get a new value 3, which is

smaller than infinity, and thus replace infinity as the new cost of chamber A as

shown in Figure 6.8(c).

In our example, v4 has been used as pump valve for multiple times and thus

actuated for 120 times. We suppose that 120 is exactly the largest number of valve

actuations in the chip. On the other hand, v2 has not been actuated yet and may

be removed at the end of the entire synthesis. Therefore, when the actuation of

v4 and v2 is involved in forming a routing path, we will either worsen our former

optimization result, or we will need to manufacture an extra new valve. In order

to reduce these actuations, we set extra cost for actuating these valves. As shown

in Figure 6.8(d), we set extra cost Ca to v2 which is never used and extra cost Cb to

v4 which has the highest number of actuations. When we want to reach chamber

B from chamber A, we need to actuate v2 and v4. Therefore, the cost of chamber

B will be updated with the sum of costs of v2, v4, and A, which is 123+Ca +Cb,

since this sum is less than infinity. Correspondingly, the new cost of chamber C

is 126 + Cb and the new cost of chamber D is 3, as shown in Figure 6.8(e)(f).

This cost function can be represented as:

if cN < cC + sviavi

+ (1− uvi)Ca +mviCb,∀vi ∈ SC ,

then cN = cC + sviavi

+ (1− uvi)Ca +mviCb,∀vi ∈ SC (6.28)

68

where cN is the cost of the to-be-reached chamber N , cC is the cost of the last

passed-by chamber C, svi is a binary variable indicating whether the actuation

of valve vi is involved in forming a fluid path from C to N , avi is the number

of actuation of vi, uvi is a binary variable indicating whether vi has ever been

actuated, mvi is a binary variable indicating whether vi is the valve with the

highest number of actuations, and SC is a set containing the valves encircling

chamber C.

According to the assay schedule, each time when we need a new routing path,

we accurately record the current valve status to decide which valve actuations

should be involved in forming this new routing path. Based on these information,

we apply our above mentioned method to get a routing solution. But since the

assay is in progress, a valve with currently fewer actuations may also serve as a

frequently actuated pump valve later. Therefore, we apply a rip-up and reroute

method for several iterations based on the former routing results to revise our

routing solution.

Suppose that we want to revise the costs of chambers A, B, C and D as

shown in Figure 6.9(a). Valve v1, v2, v3 and v4 are currently actuated for 3, 2, 5

and 40 times respectively. As shown in Figure 6.9(b), we know from the former

routing results that in the last iteration, from the current time till the end of the

assay, v2 will be actuated 80 more times. Therefore, we revise the cost of v2 by

adding 80 to it. Similarly, we also add the cost of v3 with 3. We then get the

new costs of chambers A, B, C, D as shown in Figure 6.9(c), which provides us a

more comprehensive solution.

69

sample 0 3/0 0 3/0 3
2/80 2/80

5/3 5/3
40/0 40/0

B

A

D

Cport

(a) (b) (c)

∞

∞

∞

∞

5/85

8/11

43/43

v2

v1 v3

v4

val1/val2 current cost as val1
adding tvi as val2:val1/val2 current actuation as val1

adding tvi as val2:

Figure 6.9: Chamber costs applying rip-up and reroute: (a) Target chambers. (b) Initial costs. (c)
Updated chamber costs.44

The revised cost function can be formulated as follows:

if cn < cc + svi × avi

+ (1− uvi)Ca +mviCb

+ tvi ,∀vi ∈ Sc,

then cn = cc + svi × avi

+ (1− uvi)Ca +mviCb

+ tvi ,∀vi ∈ Sc (6.29)

in which tvi indicates the extra actuations of vi from the current time till the

end of the assay in the last iteration. In this way, we maximize the utilization of

existing valves with fewer actuations and thus also existing flow channels, which

enables us to reduce the largest number of valve actuations and the sum of valves

even further.

70

da

sk

(b)

da

sk

sample waste sample waste
port port port port

(a)
Figure 6.10: (a) The storage sk is an obstacle for routing paths. (b) The storage sk can be passed
through by routing paths.44

6.7 Overall Algorithm

Algorithm 2 gives an overall view of our methods. We index the lines as Li, i ∈ N,

at the beginning of each line. After reading the program input as shown in L1

and building the data structure as shown in L2, we perform our dynamic device

mapping by using an ILP model as shown in L3-L12 and then decide the routing

paths as shown in L13-L26.

After we get our first dynamic device mapping results, we perform an area

check in L6-L8 and a fluid-path-assurance check in L9-L11 to support the relia-

bility of our method:

Our valve-role-changing concept brings us more options for overlapping.

Besides the overlapping permission for in situ on-chip storages and parent devices

as mentioned in Section 6.3, when a storage has enough free space, we also allow

routing paths to pass through this storage as shown in Figure 6.10(b), thus saving

the efforts for a long detour as shown in Figure 6.10(a). To make sure that

overlapping only happens on the premise of enough free storage-space, we perform

an area check as shown in L6-L8 and L19-L22. We then perform a fluid-path-

71

Algorithm 2: Reliability-aware synthesis.44

L1 Read sequencing graph and scheduling result.
L2 Build virtual valves in valve-centered architecture.
L3 # DynamicDeviceMapping
L4 repeat
L5 Build and solve ILP model for dynamic device mapping.
L6 if overlapping area of (storage s, device d) > free space of s then
L7 Forbid (s,d) from overlapping with each other.
L8 end
L9 if fluid paths from or to device d can not reach chip boundaries then

L10 Draw d closer to chip boundaries.
L11 end
L12 until feasible dynamic device mapping;
L13 # Routing
L14 for iteration ite = 1 to maxIte do
L15 Rip up all routed paths.
L16 for time t = 1 to maxT do
L17 forall the connections do
L18 Route a path with minimum cost.
L19 if overlapping area of (storage s, path p) > free space of s

then
L20 Forbid (s,p) from overlapping with each other.
L21 Rip up p and reroute.
L22 end
L23 end
L24 Record the numbers of valve actuations.
L25 end
L26 end
L27 Remove non-actuated valves.

72

assurance check as mentioned in Section 6.5 as shown in L9-L11.

We route the fluid paths after dynamic device mapping. The valve-actuation-

aware routing results will be revised by a rip-up and reroute method for several

iterations as shown in L14-L26.

6.8 Experimental results

We implemented the reliability-aware synthesis in C++ on a computer with a

2.67 GHz CPU. The ILP model for dynamic device mapping was solved by the

ILP solver Gurobi10. The applied device library applied is shown in Table 6.1,

where volume indicates the number of chambers occupied by a device, dimension

indicates the number of chambers in horizontal and vertical directions of this

device, and ratio indicates the input ratios that are supported by the device.

In our method, we assume that mixing operations with the same input

volume and ratios have the same duration regardless of the mixer dimensions,

and this duration indicates the maximum duration in mixers of all dimensions.

For example, suppose that a mixing operation oa can be executed in either mixer

m1 or mixer m2 (m1 and m2 only differ in dimensions), the execution time of oa in

m1 is t1 and the execution time of oa in m2 is t2. If t1 > t2, we will specify t1 as the

duration of oa in our method, regardless of whether m1 or m2 will finally be used.

The proposed method provides a conservative execution of operations in different

mixers, and it can be extended easily to handle different execution durations by

describing the execution time of an operation in different mixers with a lookup

table.

We take four test cases from widely used laboratory protocols3,29. For each

test case we set up three different policies with indices as p1, p2, and p3. As the

73

Table 6.1: Library of devices used in this work.44

Volume 4 6 8 8 10 10
Dimension 2×2 2×3 2×4 3×3 2×5 3×4

Ratio 1 : 1 1 : 2 1 : 1, 1 : 3 1 : 1, 1 : 3 1 : 4, 2 : 3 1 : 4, 2 : 3

policy index increases, we increase the number of mixers used in a traditional

design, in which dedicated mixers, storages, and detectors are used. Correspond-

ingly, we can obtain different scheduling results as the inputs for experiments.

We compare the experimental results of our method proposed in the conference

paper42 and the extended version proposed in the journal paper44 under two dif-

ferent settings, a conservative setting and an aggressive setting, along with the

results of the optimal binding for the traditional designs in Table 6.2, in which

the meaning of each column is:

#op : the number of operations and mixing operations thereof.

Po. : the policy index.

#d: the number of devices, including mixers and detectors.

#m4−6−8−10: the numbers of operations bound to the same mixers, with hyphens sep-

arating mixers of different sizes.

vs_tmax: the largest number of valve actuations applying the optimal binding for the

traditional designs.

vsmax: the largest number of valve actuations and actuations for peristalsis thereof

applying our methods.

#v: the sum of used valves.

T : the program runtime.

In Table 6.2, column 8-10 show the results of applying the method in the

conference version under conservative setting, column 11-13 show the results of

applying the method in the journal version under conservative setting, column

74

Ta
bl

e
6.

2:
Co

m
pa

ris
on

of
th

e
hi

gh
es

tv
alv

e
ac

tu
at

io
n

tim
es

an
d

th
e

nu
m

be
ro

fv
alv

es
.44

O
pt

im
al

B
in

di
ng

fo
r

Tr
ad

iti
on

al
D

es
ig

ns
C

on
f.

C
on

s.
42

Jo
ur

.
C

on
s.

44
C

on
f.

A
gg

r.
42

Jo
ur

.
A

gg
r.

44

C
ol

um
n

In
de

x
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

#
o
p

P
o
.

#
d

#
m

4
−
6
−
8
−
1
0

v
s_

t m
a
x

#
v

v
s m

a
x

#
v

T
v
s m

a
x

#
v

T
v
s m

a
x

#
v

v
s m

a
x

#
v

T

P
C

R
15

(7
)

p1
3

1-
0-

4-
2

16
0

83
45

(4
0)

71
0.

8
42

(4
0)

77
0.

8
35

(3
0)

71
31

(3
0)

62
0.

9
p2

4
1-

0-
(2

,2
)-

2
80

99
45

(4
0)

76
0.

8
44

(4
0)

71
0.

7
34

(3
0)

76
36

(3
0)

62
0.

8
p3

6
1-

0-
(2

,1
,1

)-
(1

,1
)

80
13

1
43

(4
0)

82
0.

9
44

(4
0)

82
0.

9
31

(3
0)

82
32

(3
0)

76
1.

1
M

ix
in

g
Tr

ee
37

(1
8)

p1
4

2-
4-

5-
7

28
0

10
8

93
(8

0)
10

5
2.

9
87

(8
0)

10
9

2.
4

46
(4

2)
10

5
35

(3
0)

10
5

94
p2

5
2-

4-
5-

(4
,3

)
20

0
12

4
93

(8
0)

10
5

2.
9

87
(8

0)
10

9
2.

3
46

(4
2)

10
5

35
(3

0)
10

5
94

p3
6

2-
4-

(3
,2

)-
(4

,3
)

16
0

14
0

90
(8

0)
12

4
3.

3
90

(8
0)

12
2

3.
3

60
(5

0)
12

4
38

(3
0)

12
0

21
.5

In
te

rp
ol

at
in

g
71

(3
5)

p1
7

5-
9-

9-
(6

,6
)

36
0

17
8

14
5(

12
0)

17
6

35
7.

1
13

2(
12

0)
16

3
30

.1
72

(6
5)

17
6

62
(4

2)
17

3
0.

5h
D

ilu
tio

n
p2

9
5-

(5
,4

)-
(5

,4
)-

(6
,6

)
24

0
20

7
94

(8
0)

20
7

87
.8

94
(8

0)
20

7
20

.7
56

(4
2)

20
7

38
(3

2)
20

6
1h

p3
10

5-
(5

,4
)-

(5
,4

)-
(4

,4
,4

)
20

0
22

5
92

(8
0)

20
8

10
1.

2
90

(8
0)

20
6

10
8

56
(5

0)
20

8
47

(3
5)

20
9

1.
5h

E
xp

on
en

tia
l

10
3(

47
)

p1
10

6-
(8

,8
)-

(7
,6

)-
(6

,6
)

32
0

24
1

13
5(

12
0)

21
4

48
5.

3
10

1(
80

)
22

4
77

4.
6

75
(7

5)
21

4
55

(5
0)

21
6

0.
5h

D
ilu

tio
n

p2
11

6-
(6

,5
,5

)-
(7

,6
)-

(6
,6

)
28

0
25

4
13

4(
12

0)
25

5
48

8.
9

10
3(

80
)

25
4

85
8

71
(6

5)
25

5
48

(4
0)

26
1

1h
p3

12
6-

(6
,5

,5
)-

(5
,4

,4
)-

(6
,6

)
24

0
26

8
99

(8
0)

25
9

31
4.

3
93

(8
0)

25
9

95
7.

6
58

(4
0)

25
9

47
(4

0)
25

3
1.

5h

75

14-15 show the results of applying the method in the conference version under

aggressive setting, and column 16-18 show the results of applying the method in

the journal version under aggressive setting.

In the traditional designs, we assume there are 4 different sizes of mixers: 4,

6, 8, and 10. The 4-unit mixers with two ports can support 1:1 mixing operations,

the 6-unit mixers with two ports can support 1:2 mixing operations, the 8-unit

mixers with three ports can support 1:1 as well as 1:3 mixing operations, and the

10-unit mixers with three ports can support 2:3 as well as 1:4 mixing operations.

Each design contains a storage to store products temporarily, and the number of

cells in the storage is determined by the largest number of simultaneous accesses

to the storage.

Each assay operation, according to the volume of its inputs, is assigned to a

mixer with the required size. If there are multiple mixers with the same size, we

apply an optimal binding regarding valve actuation by distributing operations to

mixers as evenly as possible. Because the loadings on mixers with different sizes

may vary considerably, we add one more mixer for each mixer type that is under

the heaviest loading as the policy index increases to alleviate the heavy burden.

For example, as shown in Table 6.2, in test case PCR policy 1, there are 3 mixers

with different sizes. 1 mixing operation is bound to the 4-unit mixer, 4 mixing

operations are bound to the 8-unit mixer, and 2 mixing operations are bound to

the 10-unit mixer. Hence we add one more 8-unit mixer in policy 2, so that in

the result of the optimal binding the 4 mixing operations can be evenly assigned

to the two 8-unit mixers as 2 operations per mixer.

In our method, we first built a square matrix containing virtual valves based

on the valve-centered architecture. In this matrix, the number of virtual valves

is larger than 1.5 times the number of valves used in the traditional method,

76

and the total fluid volume of the matrix is larger than 2 times the highest total

fluid volume of the operations that simultaneously work in the chip. This setting

is arbitrary, but not harmful to the number of valves implemented at the end,

because the non-actuated virtual valves are removed after the synthesis.

After constructing the matrix, we built and solved the model for dynamic

device mapping and routed the sample paths. We calculated the largest numbers

of valve actuations in vsmax in Table 6.2, which are close to the numbers of actua-

tions for peristalsis thereof. This fact supports our modeling methodology where

we only model actuation activities for peristalsis.

In our model, all valves passed by the circulation flow inside a dynamic

mixer are regarded as pump valves. Though in our method we use more pump

valves, so that theoretically the loading on each valve should be alleviated under

the same efficiency, it is difficult to tell how many actuations are sufficient for a

single mixing operation. Therefore, we provide both a conservative setting and

an aggressive setting for comparison with the traditional method.

Under our first setting we assume that each pump valve is actuated 40 times

for a single mixing operation, which is exactly the same as the setting for pump

valve working in a dedicated mixer in the traditional method as a conservative

comparison. vsmax in column 8 and column 11 show that even under this conser-

vative setting, we still reduce the largest numbers of actuations by more than 50%

compared with traditional method. By contrast, under our aggressive setting, we

assume that the sum of actuations for peristalsis of a mixer is the same as that in

the traditional method. For example, the sum of valve actuations for peristalsis

of a dedicated mixer to perform a single mixing operation in a traditional design

is 3×40=120, so we change the number of actuations of each valve in our dynamic

mixer using 8 pump valves to 15 since 8×15=120. As shown in vsmax in column

77

tu

o1

0 2 63 9 12 15 2218 25 29

o2
s5

s7
o3

s6
o4

o6

o7

o5

Figure 6.11: The scheduling result of case PCR in p1.44

14 and column 16, the results are much better, even with a small number of valves

shown in #v.

Compared with the conference version, three major improvements are pro-

posed in the journal version:

1. Routing-convenient mapping with virtual boundary mentioned in Section 6.4.
2. Assurance of fluid paths to chip boundaries mentioned in Section 6.5.
3. Valve-actuation-aware routing applying rip-up and reroute method men-

tioned in Section 6.6.

which bring about better solutions in valve actuation as well as the sum of

valves, and enhance the reliability of our method.

The routing-convenient mapping provides our model more flexibility in gen-

erating devices, while their connections are guaranteed with virtual boundaries

and virtual areas of devices. For large designs that provide more options to the

locations of devices, devices can be generated in best places when their locations

are not strongly limited by the locations of their parent and child devices. Since

the best locations for devices performing sequential operations may be far apart

from each other, to route the possible long connections between them, our valve-

actuation-aware routing method shows its benefit. In the journal version, we

model corresponding valve actuations accurately for accessing every chamber in

78

the chip, and we further revise the results by rip-up and reroute. Compared with

the routing in the conference version where we route fluid paths in the shortest

length, in the journal version a longer path may be preferred if valve actuations

led by routing this path can be reduced. As shown in Table 6.2, we achieve re-

sults with noticeable improvements for vsmax in column 8 and column 11 as well

as for #v in column 9 and column 12. For example, compared with the conference

version, for test case Exponential Dilution in policy 1, in the journal version we

further reduce the largest number of valve actuations under both conservative and

aggressive settings by more than 25%.

In the conference version, we only performed optimization under conserva-

tive setting, and the results under aggressive setting were directly derived from

the results under conservative setting, where the program runtimes under aggres-

sive setting approximate 0 and we thus omitted them in the table. In the journal

version, we perform optimization for each test case both under conservative and

aggressive setting.

In general, the program runtime denoted as T in Table 6.2 is not very stable,

which strongly depends on the heuristics the optimization solver selects. However,

a trend can still be observed that the program runtime typically exponentially

increases with the problem size, which is mainly caused by the ILP modeling

method that we apply. Though the scalibility is usually considered as an issue for

ILP modeling method, it is not a serious problem for this work, since the matrix

size of the general purpose architecture cannot be unlimitedly enlarged.

To show the working principles of our method intuitively, we take the syn-

thesis result of case PCR with 7 mixing operations in policy 1 as an example.

The input of our method is the scheduling result of this case with 3 time-units

(tu) as the transport delay. We show the scheduling result in Figure 6.11 and the

79

Figure 6.12: Snapshots of the synthesis result of test case PCR in policy 1 under conservative
setting.44

synthesis result in Figure 6.12, in which o1 and o2 are the parent operations of o5,

o3 and o4 are the parent operations of o6, and o5, o6 are the parent operations of

o7.

In Figure 6.12, closed valves are drawn in light color. The valves that are

never actuated are removed and the area is left empty, just like the two valves

at the top-right corner of the chip. In addition, if valves are only actuated once

and no fluid flows through them while they are open, they are removed as well

80

and we build functionless walls drawn in dark color at the areas those valves once

occupied. The numbers of valve actuations at every time moment are directly

labeled on the corresponding valves. Fluid paths are represented by lines and

their directions are indicated by the arrows on the lines. If two or more paths

come from or go to the same region, the paths routed earlier are drawn in dashed

lines, and the paths routed later are drawn in solid lines. Since not all of the

products would go to next devices but some of them also would go to waste sink,

for each dynamic device finishes its job we route a fluid path for it to the waste

port. Unlike the fluid paths from input ports, fluid paths to waste port are drawn

in dark color.

At t = 0tu as shown in Figure 6.12(a), o3 starts and takes sample and

reagent as inputs from port 1 and 2. The input from port 2 comes first, and is

followed by the input from port 1.

Since o3 is a mixing operation with a volume as 8 units, it occupies a 2×4

area in the chip, in which 2 internal valves are closed as internal boundaries of the

mixer, and the other 8 internal valves are actuated for 40 times as pump valves

to produce a circulation flow.

At t = 2tu as shown in Figure 6.12(b), o4 starts and the dynamic device

mapped by it is located adjacent to the device mapped by o3. These two devices

share the same closed valves as their outer boundaries. The input of o4 from port

1 comes first this time, and the valve connected to port 1 at the chip boundary is

closed when routing the fluid path from port 2.

At t = 3tu, storage s6 is constructed immediately after o3 and o4 are finished

as shown in Figure 6.12(c), which stores the products of o3 and o4. Some products

of o3 and o4 go to their next device s6, but some of them also go to waste sink.

Note that the storage mapped by s6 is placed in a distance from o3 and o4. In the

81

method in the conference version, this situation can not happen since the child

devices are forced to be placed adjacent to their parent devices to prevent other

devices from being inserted between them. With the concept of virtual boundaries

proposed in the journal version, the virtual area of s6 can be larger than the area

it really occupies, and is adjacent to the mixers mapped by o3 and o4. Since the

overlapping between virtual areas is prohibited, no device can be inserted between

the devices mapped by o3 and s6 as well as o4 and s6, so that the connections

between them can be guaranteed and directly constructed.

At t = 6tu s6 changes into a device mapped by o6 and starts to work as

shown in Figure 6.12(d), which ends at t = 9tu as shown in Figure 6.12(e). Some

of product of o6 goes to s7, and some other goes to the waste port. This fluid

path to the waste port is not the shortest one in distance from the device mapped

by o6, but has the lowest cost according to our cost function (6.29). At the same

time, o2 starts after receiving inputs from port 1 and port 2.

At t = 12tu o2 ends and sends its product to s5 as well as to the waste

port as shown in Figure 6.12(f). Also, o1 starts while the device performing o1

occupies a chamber of the storage for s5 with the prerequisite that the remaining

free area inside the storage is still enough to store its input from o2. In our test

case, according to the information from the sequencing graph of the bioassay, only

2 volume-unit product of o5 comes from o2 and 8 volume-unit product comes from

o1, thus the overlapping of 1 volume-unit chamber between the device mapped

by o1 and s5 is allowed, since the storage mapped by s5 only contains 2 volume-

unit product from o2 for the time being, and the feasibility check mentioned in

Section 6.7 can pass.

In Figure 6.12(f), though storage s5 overlaps with one of its parent device

mapped by o1, it is placed far away from its another parent device mapped by o2,

82

(a) (b) (c)

Figure 6.13: Different designs of PCR in different policies under conservative setting: (a) Policy 1.
(b) Policy 2. (3) Policy 3.44

and their direct connection is blocked by the storage for s7. In the journal version,

this situation can happen since the device mapped by o7 is the child device of the

device mapped by o5, thus the overlapping of their virtual areas is allowed when

performing dynamic device mapping. However, when performing feasibility check

for overlapping area among devices, we use the real boundaries of devices so that

the check passes since the actual area of the device mapped by o7 do not overlap

with the actual area of the device mapped by o5. Consequently, storage s5 can be

placed far from the device mapped by o2, and storage s7 can be placed in between

them.

Though s7 seems to obstruct the direct connection from the device mapped

by o2 to the device mapped by o5, device like s7 must be a storage and is not a

blockage in most cases since one of its parent devices, e.g. the device mapped by

o5 in this case, just starts to work after receiving inputs from this direction con-

nection. In this case, though the valve-actuation-aware routing method eventually

routes this connection as a detour since this routing leads to the minimum valve

actuation according to our cost function, a straight connection is still available,

83

Figure 6.14: Different synthesis results of test case Exponential Dilution at t = 143tu by different
methods: (a) With the method proposed in the conference version.42 (b) With the method proposed
in the journal version under conservative setting.44 (c) With the method proposed in the journal
version under aggressive setting.44

as s7 only contains 2 volume-unit input from o6 according to our test case and

has 8 free volume units left that can be used for overlapping.

At t = 15tu as shown in Figure 6.12(g), o1 ends and sends its product to s5

and the waste port. Then o5 starts to work at t = 18tu as shown in Figure 6.12(h).

After o5 ends at t = 22tu as shown in Figure 6.12(i), it sends its product to s7 as

well as to the waste port. Note that the fluid path from the device mapped by o5 to

the waste port has a similar shape with the paths from o3 to s6 in Figure 6.12(c),

from o3 as well as o4 to the waste port in Figure 6.12(c), from o6 to the waste

port in Figure 6.12(e), and from o1 to the waste port in Figure 6.12(g), because

our rip-up and reroute method tend to minimize valve actuation regarding the

current status of valves. Since these valves are used to form fluid paths or flow

channels in devices at early time moments, they tend to be chosen to form flow

channels for fluid paths as only few valve actuations are needed.

Finally, at t = 25tu as shown in Figure 6.12(j), the last operation o7 starts,

and it ends at t = 29tu as shown in Figure 6.12(k). We assume that for all test

84

cases, their final products leave the chip from the only output port, which is also

regarded as the waste port. Note that the fluid path from the device mapped by

o7 to the waste port is routed in the same manner again as for other devices.

Figure 6.13 shows different designs of PCR in different policies under con-

servative setting, where designs in Figure 6.13(a) and Figure 6.13(b) are derived

from a 8×8 valve matrix, and the design in Figure 6.13(c) is derived from a 9×9

valve matrix. These designs look very different from each other since compared

with the sum of valves actually needed to implement the designs, the sum of vir-

tual valves in these matrices are more than sufficient, and the synthesis results

have shown some characteristics about the bioassays.

Figure 6.14 shows the performance of our method on relatively small virtual-

valve matrices for test case Exponential Dilution by using different methods or

under different settings, in which the status of valves and the sum of valve actua-

tions show the final moment of the chip that it should be after finishing the whole

bioassay at t = 143tu. Figure 6.14(a) shows the result of applying the method

in the conference version. Since each time when a valve plays the role as pump

valve, it needs to be actuated for 40 times under our setting. In Figure 6.14(a)

there are several valves playing the role as pump valve for 3 times, while there are

also several valves playing the role as pump valve for 0 times. For these valves,

the difference in valve actuation can be larger than 120, and thus leads to a re-

markable imbalance. This imbalance is significantly alleviated by our method

proposed in the journal version. In Figure 6.14(b), the result is greatly improved

as most valves play pump valve for 2 times, and the largest number of actuations

decrease from 135 to 101.

Figure 6.14(c) shows the result of applying the method proposed in the

journal version under aggressive setting, by which valve actuations are further

85

decreased. Note that in Figure 6.14(a), there is only one valve under the heaviest

loading and needs to be actuated for 135 times. We circle out this certain valve

in Figure 6.14(a). But in Figure 6.14(b) there are 2 valves actuated most for

101 times, and in Figure 6.14(c) there are 6 valves actuated for 55 times under

the heaviest loading. This means that compared with the conference version,

valve actuations in the journal version are not only decreased but also distributed

evenly.

Figure 6.14(c) also demonstrates that a fluid path with the minimum valve

actuations may not be the shortest one. In Figure 6.14(c), a long detour is chosen

for forming the fluid path to transport the final product of a detector to the output

port. Though this path is long, it takes advantage of existing flow channels and

thus contributes to a better solution.

As a conclusion, in this chapter I have addressed a reliability problem of

flow-based biochips due to unbalanced valve actuations. The problem is solved

by the proposed reliability-aware synthesis including two steps as dynamic device

mapping and fluid path routing based on a virtual valve-centered architecture with

valve-role-changing concept. I first published my proposed method as a conference

paper and then enhanced and published it as a journal paper. Compared with the

conference version, I have revised the routing-convenient device mapping, assured

fluid paths to chip boundaries, and proposed a valve-actuation-aware routing for

fluid paths. Experimental results show the effectiveness of the proposed method.

86

7. Columba: Co-Layout Synthesis

for Continuous-Flow Microflu-

idic Biochips

The conventional automated physical design approach for classical continuous-

flow microfluidics is to separate the design process into flow-layer and control-

layer design, which cannot handle the layer interactions properly, due to the lack

of a global view. As a result, before 2016, there had been no physical design tool

that could generate the complete layout of a chip including placement and routing

solutions of both control and flow layers.

In 2016, my team proposed the first co-layout synthesis tool Columba that

filled this design automation gap47. Columba took plain-text descriptions as in-

puts, and synthesized the layout of both control and flow layers simultaneously.

The output of Columba was AutoCAD-compatible designs, which could be used

for mask fabrication.

In order to model layer interactions in a systematic manner, we proposed the

first physical-design module models for important microfluidic devices and com-

ponents including mixer, reaction chamber, switch and port. The inner structures

87

(a)

3w2.5w 3w

2w

4.5w

4.5w

xhl

yhl

(b)

p0

p1

p2

p3

p4 p5 p8 p9p12 p13

p6 p7 p10 p11p14 p15

p0

p1

p2

p3

2.5w

1.5w

(c)

p0
1.5w

(d)

p0

p1

p5 p9 p4n−3

p4n+1p4 p8 p4n−4

p4n

p2

p6
p7

p10
p11

p4n−2

p4n−1 p3

pump2

pump1

v0

c0

c1

Figure 7.1: Physical-design module models for: (a) Mixer. (b) Reaction Chamber. (c) In-/Outlet
(fluid). (d) Switch.47

of the proposed models are shown in Figure 7.1, where flow channels are indicated

by blue lines, control channels by green lines, and valves by orange rectangles. We

allowed modification of our module models to meet various design requirements,

including the change of component dimension, channel width, minimum spacing

distance, etc. We also provided alternative pin-locations to enhance the flexibil-

ity of our design. For example, in a mixer module as proposed in Figure 7.1(a),

we provided two potential locations of peristalsis pumps: pump1 and pump2, the

selection of which would be made by Columba during the synthesis process. Once

the location and orientation of our modules are determined, the location of valves

are determined automatically. As layer interactions only happen at valves, our

module models serve as the basic units for both control and flow layer design.

Columba performed a progressive integer-linear-programming (P-ILP) based

modeling method for layout generation, which consisted of four phases: 1. global

88

Scheduling and binding results

chip size improvement?

Physical designs

Architectural Model

overlap?
Yes

No

Global Layout Generation

overlap?
Yes

No

Handling Pin Constraints

overlap?
Yes

No

Port-size Recovery

Yes

No

Refinement

Figure 7.2: The flowchart of Columba.47

layout generation; 2. valve-level restoration; 3. in-/outlet restoration; and 4.

iterative refinement. A flowchart of the proposed method is shown in Figure 7.2.

In the following, we describe our proposed method in detail. Similar de-

scriptions can also be found in our published paper47.

7.1 Global Layout Generation

7.1.1 Channel model

As the backbone of the global layout, we propose a directed channel model

which consists of several bending points and channel segments. As shown in Fig-

89

bi,0

bi,1

bi,2

bi,n−1

segi,0

segi,1

segi,2
...segi,n−2

(a) (b)

m0

m2

seg0,0 m3 seg1,0

seg2,0

m1

(c)

c1

c2

(d)

b2,b

b1,a

Figure 7.3: (a) Channel model. (b) An example of initial states of channels in global layout. (c)
An example of channel crossing. (d) An example of adding new bending points.47

ure 7.3(a), the bending points of the i-th channel ci are indexed as bi,0, · · · , bi,n−1,

and the channel segments are indexed as segi,0, · · · , segi,n−2, thereof bi,k and bi,k+1

are also called the terminals of segi,k, and bi,0 and bi,n−1 are also called the termi-

nals of ci. n ∈ N indicates the number of bending points.

We represent the location of the i′-th module containing valves by its center

points (mi′,x,mi′,y) in a coordinate system, together with mi′,x ± 1
2
mi′,w, mi′,y ±

1
2
mi′,h indicating the location of the module boundaries, mi′,w and mi′,h indicating

the width and height of the i′-th module.

In phase 1, for the sake of model reduction, instead of connecting each

channel with specific pins of modules, we connect channels with the center points

of modules. The incoming (outgoing) control channels connecting the same pair

of modules are regarded as a whole channel bundle sharing the same bending

points. We index the j-th channel bundle as cbj, along with a new variable ncbj

indicating the number of control channels merged by cbj. We assign a group of

control ports with no area cost (see Section 7.3) to each module containing valves.

The number of ports which a port group eventually contains is determined by the

number of control channels connected to it.

90

7.1.2 Pressure Source Sharing

Valves inside the same module are required to work simultaneously with different

actuation patterns, and therefore need to be driven by individual pressure sources.

However, valves in different modules that do not have any overlapping working

period according to the scheduling results can share the same pressure sources to

reduce control efforts.

Therefore, besides an incoming control channel connected to a pressure

source, every valve va may also possess an outgoing control channel, which is

connected with another valve vb as the incoming control channel of vb in a dif-

ferent module, thus va and vb are connected in series to share the same pressure

source.

We introduce the following constraints to describe this pressure sharing

scenario for each module mi′ ∈M :

∑
∀cbj∈Cin,i′

ncbj = Vi′ , (7.1)

∑
∀cbj∈Cin,i′

ncbj ≥
∑

∀cbj∈Cout,i′

ncbj (7.2)

where M is the set of all modules, Cin,i′ (Cout,i′) is the set of all incoming (outgoing)

channel bundles of mi′ , and Vi′ is a constant representing the number of valves

in mi′ . (7.1) means that the number of incoming control channels connected

to mi′ must equal the number of valves in mi′ , since every valve possesses an

incoming control channel as its pressure source. (7.2) means that the number

of the outgoing control channels connected to mi′ should be no more than the

number of the incoming control channels, since not all valves necessarily possess

91

outgoing control channels.

7.1.3 Channel Non-crossing Limitations

As shown in Figure 7.3(b), each channel possesses in its initial state only one

segment formed by two terminals, which are the center points of the two modules

connected by this channel. In order to avoid the crossing among channels in the

same layer, we view each segment as the diagonal of a rectangle with exclusive

chip area, and prohibit overlapping among these areas: suppose that bi,k, bi,k+1

and bj,l, bj,l+1 are the respective terminals of two different segments si,k and sj,l,

and the coordinate of a bending point (terminal) is represented as (b·,·,x, b·,·,y).

There are four types of possible locations allowed for these terminals to avoid

area overlapping, which can be transformed into (7.3)(7.4)(7.5)(7.6):

bi,k,x ≤ bj,l,x + qleΦ− w, bi,k,x ≤ bj,l+1,x + qleΦ− w,

bi,k+1,x ≤ bj,l,x + qleΦ− w, bi,k+1,x ≤ bj,l+1,x + qleΦ− w, (7.3)

bi,k,x ≥ bj,l,x + qriΦ− w, bi,k,x ≥ bj,l+1,x + qriΦ− w,

bi,k+1,x ≥ bj,l,x + qriΦ− w, bi,k+1,x ≥ bj,l+1,x + qriΦ− w, (7.4)

bi,k,y ≤ bj,l,y + qboΦ− w, bi,k,y ≤ bj,l+1,y + qboΦ− w,

bi,k+1,y ≤ bj,l,y + qboΦ− w, bi,k+1,y ≤ bj,l+1,y + qboΦ− w, (7.5)

bi,k,y ≥ bj,l,y + qupΦ− w, bi,k,y ≥ bj,l+1,y + qupΦ− w,

bi,k+1,y ≥ bj,l,y + qupΦ− w, bi,k+1,y ≥ bj,l+1,y + qupΦ− w, (7.6)

qri + qle+qup + qbo = 3 + qp (7.7)

where w is the minimum spacing distance between two segments, which is larger

than the value specified in the design check rules (see Section 7.3) and Φ is an

92

extremely large auxiliary integer variable. qle, qri, qbo, qup, and qp are auxiliary

binary variables, thereof qp is the Lagrange multiplier, the minimization of which

is included in the optimization targets. If qp = 0, one of (7.3)(7.4)(7.5)(7.6) has to

be non-trivial according to (7.7), and a feasible solution of this inequality group

indicates locations of two segments without area overlap.

If the overlapping of two segments is inevitable with the current bending

points status, qp has to be set to 1. In this situation, phase 1 will be rerun and new

bending points will be added to the channels with conflicts, thus enabling a detour

around the conflict area. As shown in Figure 7.3(c), the initial states of channel

c1 and c2 result in an inevitable crossing. Therefore, new bending points b1,a and

b2,b are added to c1 and c2 respectively. The locations of the existing bending

points can be adjusted within a limited floating range according to their previous

locations, and the coordinates of b1,a and b2,b are constrained by the locations of

these existing binding points as shown in Figure 7.3(c). With b1,a and b2,b, now

the crossing can be avoided as shown in Figure 7.3(d).

93

7.1.4 Module Placement

The non-overlapping limitations of modules are realized in a similar manner as

Section 7.1.3:

mi′,x −
1

2
mi′,w ≥ mj′,x +

1

2
mj′,w − qriΦ, (7.8)

mi′,x +
1

2
mi′,w ≤ mj′,x −

1

2
mj′,w + qleΦ, (7.9)

mi′,y −
1

2
mi′,h ≥ mj′,y +

1

2
mj′,h − qupΦ, (7.10)

mi′,y +
1

2
mi′,h ≤ mj′,y −

1

2
mj′,h + qboΦ, (7.11)

qri + qle + qup + qbo = 3 + qp. (7.12)

If qri (qle, qup, qbo) is set to 0, mi′ will be placed to the right (left, upper, bottom)

side of mj′ .

In our module models, the flow channels are connected to a mixer module

or a reaction chamber module from opposite directions. For the convenience of

channel routing, we rule that if mb and mc are two modules connected to module

ma, then mb and mc must be placed at opposite directions relative to ma. For

example, if mb is placed to the right side of ma, then mc has to be placed to the

left side of ma. We specify this rule by modifying the auxiliary binary variables

in (7.8)-(7.12).

7.1.5 Objective

We represent the side lengths of a chip as two continuous variables sx and sy, and

the set of all bending points as B. Then we introduce the following constraints to

94

all bi,k ∈ B:

bi,k,x ≥ d ∧ bi,k,x ≤ sx − d ∧ bi,k,y ≥ d ∧ bi,k,y ≤ sy − d (7.13)

thereof d is the minimum spacing distance from the chip boundaries to a bending

point. If bi,k is the center point of a module mi′ , we increase d by 1
2
max{mi′,w,mi′,h}.

Since the chip area is a quadratic variable, we introduce a new continuous variable

sd = max{sx, sy} to represent the dimension of the chip.

Therefore, we formulate our minimization objective as:

αsd + α1sx + α2sy + β
∑

∀cbi∈C

cbi,l + γ
∑

∀cbi∈CP

ncbi + σ
∑
∀qp∈E

qp (7.14)

thereof C is the set of all channel bundles, Cp is the set of all channel bundles

that are connected with port groups, E is the set of Lagrange multipliers, cbi,l is

the length of cbi, and α (together with α1 and α2), β, γ, σ are thus the adjustable

weight coefficients of chip area, total channel bundle lengths, the number of ports

and Lagrange multipliers respectively, thereof α1, α2 ≪ α are used to prevent the

abuse of chip area, and α is increased progressively in the following phases.

7.2 Handling Pin Constraints

With the modelling results from phase 1 indicating the module locations and chan-

nel connections, we can specify the locations of valves and pins inside a module,

which enables us to split a channel bundle into real channels connected with the

pins for an accurate layout as shown in Figure 7.4(a), instead of with the center

point of a module.

For a given module mi′ , we represent the set of all incoming channels con-

95

(a)
m0

m2
m3

m1

(b)
m0

m2
m3

m1

Figure 7.4: (a) An example of accurate layout. (b) An example of port-size recovery.47

nected to mi′ as Cin, the set of all outgoing channels connected to mi′ as Cout, and

the set of pins in mi′ as P , thereof all pins are indexed according to the module

models shown in Figure 7.1, and the location of a pin pj ∈ P is represented as

(mi′,x+κj,x,mi′,y +κj,y), where κj,x and κj,y are constants indicating the distance

between pj and the center point of mi′ .

Therefore, we can introduce the following constraints to locate the terminals

bi,k of control channels ci ∈ Cin ∪ Cout connected to mi′ :

bi,k,x = mi′,x +
∑

0≤j<|P |

qi,jκj,x, (7.15)

bi,k,y = mi′,y +
∑

0≤j<|P |

qi,jκj,y, (7.16)

thereof qi,j is an auxiliary binary variable representing the selection of pins: if qi,j
is set to 1, channel ci will be connected to pin pj.

Then we introduce the following constraints to ensure that ci will be con-

nected to exactly one pin of mi′ (7.17), and a pin pj can be connected with at

96

most one channel (7.18):

∀ci ∈ Cin ∪ Cout,
∑

0≤j<|P |

qi,j = 1, (7.17)

0 ≤ j ≤ |P |,
∑

0≤i<|Cin∪Cout|

qi,j ≤ 1. (7.18)

As mentioned in Figure 7.1 and Section 7.1.2, each valve in our modules

possesses two pins, which can be indexed as pj′ and pj′+1, j′ ∈ {2k|k ∈ N0}.

For a valve controlling fluid flow, one of its pins must be connected with an

incoming control channel, while the other pin can be connected with an outgoing

control channel or be left unused. Therefore, the number of pins connected with

outgoing control channels must be no more than the number of pins connected

with incoming control channels. This is described by the following constraints:

∑
i∈{i|ci∈Cin}

qi,j′ ≥
∑

ǐ∈{̌i|cǐ∈Cout}

qǐ,j′+1, (7.19)

∑
i∈{i|ci∈Cin}

qi,j′+1 ≥
∑

ǐ∈{̌i|cǐ∈Cout}

qǐ,j′ . (7.20)

Since we have two possible locations for a pump in our mixer module, not

all valves forming peristalsis pumps need to be connected with control channels.

As shown in Figure 7.1(a), if we regard pump1 and pump2 as valves possessing

two pins, only one of them will be connected with a control channel and the other

will be left unused. Therefore, we introduce the following constraints to describe

97

channel connections for mixer modules:

∑
i∈{i|ci∈Cin}

(qi,j′ + qi,j′+1) ≤ 1, (7.21)

∑
i∈{i|ci∈Cin},j∈{12,13,14,15}

qi,j = 1. (7.22)

We also put the non-crossing constraints mentioned in Section 7.1.3 on the new

control channels generated in this phase, and rerun the optimization until no

channel crossing exists.

7.3 Port Module Restoration

Since a port module contains only one pin, which can be located anywhere on

the module boundary, the connection between ports and other modules is not so

complicated as the connection between two modules containing valves. Therefore,

for the sake of model reduction, the area costs of ports are ignored in phase 1 and

phase 2.

In this phase, we restore the ports as modules with given side length. Since

we have kept a relatively large minimum spacing distance between channels and

modules in previous phases as mentioned in Section 7.1.3 and Section 7.1.4, it is

not difficult to find suitable locations for these ports with little draw-and-push

efforts as shown in Figure 7.4(b). Then we put the non-crossing constraints on

the channels connected with ports and other modules, and rerun the optimization

until no channel crossing exists.

98

Table 7.1: Generated design features.47

D(mm2) L(mm) #(m, r, s, fp, cp) T

kinase act.6 15.05 × 15.05 163.54 2, 2, 3, 7, 24 5m22s
acid proc.11 18.35 × 18.15 252.83 3, 3, 3, 11, 40 9m5s

ChIP (4IP)51 27.95 × 26.65 298.25 5, 4, 2, 17, 44 9m56s
mRNA iso.18 22.77 × 24.30 564.01 4, 4, 3, 18, 54 34m42s
ChIP (10IP) 38.15 × 38.11 556.42 11, 10, 2, 23, 100 46m10s

D: chip dimension. L: total length of channels. #m, #r,
#s, #fp, #cp: number of mixers, reaction chambers, switches,
fluid ports, and control ports. T : program runtime.

7.4 Refinement

In the last phase of our modelling process, we replace the above mentioned large

minimum spacing distance with the actual requirement according to30, and re-run

the optimization for better utilization of the chip area.

7.5 Experimental results

We implemented our method in C++ on a computer with 2.40 GHz CPU. The

proposed model is linear and thus the optimization problem can be solved by the

Mixed Integer Linear Programming (MILP) solver Gurobi10.

Table 7.1 shows the feature values of the automatically-generated designs

by Columba. The first four test cases are from6,11,18,51 and are listed with the

order as their sizes. To show the scalability of Columba, we design a 10 Immuno-

precipitation (IP) chip (ChIP (10IP)) by duplicating 6 more parallel IP process

as the fifth test case. The number of the synthesized control ports #cp as well as

the program runtime T increase smoothly proportional to the design complexity,

which is denoted by #m (mixers), #r (reaction chambers), #s (switches), #fp

99

(fluid ports) as the given inputs from scheduling results.

Figure 7.5 shows the comparison between the manual design and the au-

tomatic design by Columba for ChIP (4IP). Blue and green lines in the figure

indicate the flow and control channels, small blue and green circles represent the

fluid and control ports, big blue ellipses represent the mixers, pink rectangles rep-

resent the reaction chambers, and orange segments represent the valves. Since

the dimension of each mixer is clearly specified as 7.5mm × 3.8mm in51, we can

estimate the chip size of the manual design, which is larger than the automatic

design generated by Columba.

Figure 7.6 shows the temporary resultant graphs of test case ChIP(10IP).

The global layout is determined in phase 1 as shown in Figure 7.6(a); in phase

2, channel bundles are split into real channels and connected to pins of modules

instead of the central points of modules as shown in Figure 7.6(b); and in phase

3, chip ports are restored as modules with area cost as shown in Figure 7.6(c).

Since the weight coefficient α of area cost is increased progressively, the chip area

is gradually reduced. Figure 7.7 shows the snapshot of the final design generated

by Columba for ChIP(10IP), which, though large and complicated, requires less

than 1 hour for the entire synthesis.

One of the outputs of Columba is an AutoCAD script file. The script can

be run to generate an AutoCAD design automatically as shown in Figure 7.8.

As currently AutoCAD is the most popular design tool for biochip designers,

minor adjustments via AutoCAD can be easily made for these designers if they

have some new ideas even after the design is already generated by Columba. In

the meanwhile, this function also demonstrates that Columba can be easily and

seamlessly integrated into the current design-and-manufacturing flow, lowering

the barrier for the designers to use Columba.

100

Columba is the first tool that can automatically transform a plain-text

netlist description into a valid microfluidic chip design with all necessary fea-

tures. Compared with the manual design, applying Columba not only can save

the design effort but the generated designs are guaranteed to be fault-free, since

all design rules can be modeled as mathematical constraints in Columba and any

constraint violation cannot escape from the check by the computer.

Columba aims to be the first commercial design automation tool for the

mainstream continuous-flow microfluidics. Future work of Columba includes: (1)

developing user interface; (2) extending the library of module models.

101

7.5mm34.1mm 30mm

26.65mm

27.95mm

7.5mm

(a)

(b)

control channel

flow channel

control port
fluid port

mixer

reaction chamber

valve

Figure 7.5: ChIP51 design: (a) Manual (b) Columba.47

102

(a) (b) (c)

1cm

Figure 7.6: Temporary resultant graphs of test case ChIP(10IP): (a) Phase 1. (b) Phase 2. (c)
Phase 3.47

103

1cm

Figure 7.7: The final design of test case ChIP(10IP).47

104

Figure 7.8: The ChIP(10IP) final design exported by AutoCAD and automatically generated by
Columba.

105

8. Conclusion

With the endeavor over one decade, design automation research for continuous-

flow microfluidics is approaching the state-of-the-art technology in bioengineering.

In the front-end field, device/component library is continuously extended, and ma-

ture high-level synthesis algorithms have been developed. In the back-end field,

the characteristics of representative microfluidic devices/components, the interac-

tion among control channel routing, flow channel routing, and device/component

placement, have been well studied. However, there remain two main challenges in

design automation research for continuous-flow microfluidics.

The first challenge is the fact that currently there is no standard in mi-

crofluidic manufacturing. So far, most design automation research is based on the

multi-layered valve technology developed by Quake’s group at Stanford Univer-

sity. Though Quake’s group undoubtedly holds a leading position in bioengineer-

ing, there are many more bioengineers working on different technologies, most of

which are developed on their own. Different technologies lead to different design

rules, and in some new technologies there are not even any explicit design rules.

Therefore, to develop a design tool that everyone can be satisfied with is very

difficult.

Another challenge is presented by large-scale-integrated designs. Though

106

both bioengineers and design automation engineers claim that large-scale-integration

is the trend for future microfluidics, so far there has been no mature large-scale-

integrated design, except the designs that have very homogeneous architecture.

Even when a design automation tool can generate a large-scale-integrated design,

there is no corresponding real assay that can be performed on it, and no com-

parison can be made between the manual design and the automatically-generated

large-scale-integrated design.

To conquer these challenges, a close cooperation between bioengineers and

design automation engineers is required. This, however, is difficult, since currently

most bioengineers tend to invent small-scaled devices only to demonstrate the

usability of their own technology, and neither standardization nor large-scale-

integration brings them direct benefits. Nevertheless, both standardization and

large-scale-integration are necessary conditions for microfluidics to become the

dominant platform in performing bioassays, which needs continuous effort from

both the bioengineering and design automation field.

107

Bibliography

[1] Amin, A. M., Thottethodi, M., Vijaykumar, T., Werely, S., & Jacobson,

S. C. (2007). Aquacore: a programmable architecture for microfluidics. In

Proc. Int. Symp. on Comput. Archi. (pp. 254–265).

[2] Amin, N., Thies, W., & Amarasinghe, S. P. (2009). Computer-aided design

for microfluidic chips based on multilayer soft lithography. In Proc. Int.

Conf. Comput. Des. (pp. 2–9).

[3] Chakrabarty, K. & Su, F. (2006). Digital Microfluidic Biochips: Synthesis,

Testing, and Reconfiguration Techniques. Boca Raton, FL: CRC Press.

[4] Cho, C.-H., Cho, W., Ahn, Y., & Hwang, S.-Y. (2007). PDMS–glass ser-

pentine microchannel chip for time domain PCR with bubble suppression

in sample injection. J. Micromech. Microeng., 17(9), 1810–1817.

[5] de la Guardia, M. & Garrigues, S. (2011). Challenges in Green Analytical

Chemistry. Royal Society of Chemistry.

[6] Fang, C., Wang, Y., Vu, N. T., Lin, W.-Y., Hsieh, Y.-T., Rubbi, L., Phelps,

M. E., Müschen, M., Kim, Y.-M., Chatziioannou, A. F., Tseng, H.-R., &

Graeber, T. G. (2010). Integrated microfluidic and imaging platform for a

108

kinase activity radioassay to analyze minute patient cancer samples. Cancer

Res., 70(21), 8299–8308.

[7] Fidalgo, L. M. & Maerkl, S. J. (2011). A software-programmable microfluidic

device for automated biology. Lab on a Chip, 11, 1612–1619.

[8] Fluidigm Corporation (2016). C1 system.

https://www.fluidigm.com/products/c1-system.

[9] Gomez-Sjoeberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S., & Quake,

S. R. (2007). Versatile, fully automated, microfluidic cell culture system.

Anal. Chem, 79, 8557–8563.

[10] Gurobi Optimization, I. (2015). Gurobi optimizer reference manual.

[11] Hong, J. W., Studer, V., Hang, G., Anderson, W. F., & Quake, S. R. (2004).

A nanoliter-scale nucleic acid processor with parallel architecture. Nature

Biotechnology, 22(4), 435–439.

[12] Hu, K., Yu, F., Ho, T.-Y., & Chakrabarty, K. (2014). Testing of flow-based

microfluidic biochips: Fault modeling, test generation, and experimental

demonstration. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

33(10), 1463–1475.

[13] Jiang, X., Shao, N., Jing, W., Tao, S., Liu, S., & Sui, G. (2014). Mi-

crofluidic chip integrating high throughput continuous-flow PCR and DNA

hybridization for bacteria analysis. Talanta, (pp. 246–250).

[14] Li, M., Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2016). Sieve-

valve-aware synthesis of flow-based microfluidic biochips considering specific

109

biological execution limitations. In Proc. Design, Automation, and Test

Europe Conf. (pp. 624–629).

[15] Lin, C.-X., Liu, C.-H., Chen, I.-C., Lee, D. T., & Ho, T.-Y. (2014). An

efficient bi-criteria flow channel routing algorithm for flow-based microfluidic

biochips. In Proc. Design Autom. Conf. (pp. 141:1–141:6).

[16] Liu, J., Enzelberger, M., & Quake, S. (2002). A nanoliter rotary device for

polymerase chain reaction. Electrophoresis, 23, 1531–1536.

[17] Luby, M. (1986). A simple parallel algorithm for the maximal independent

set problem. SIAM J. Comput., 15(4), 1036–1053.

[18] Marcus, J. S., Anderson, W. F., & Quake, S. R. (2006). Microfluidic single-

cell mRNA isolation and analysis. Anal. Chem., 78, 3084–3089.

[19] Marcy, Y., Ishoey, T., Lasken, R. S., Stockwell, T. B., Walenz, B. P.,

Halpern, A. L., Beeson, K. Y., Goldberg, S. M. D., & Quake, S. R. (2007a).

Nanoliter reactors improve multiple displacement amplification of genomes

from single cells. PLoS Genet, 9(3), e155.

[20] Marcy, Y., Ouverney, C., Bik, E. M., Lösekann, T., Ivanova, N., Martin,

H. G., Szeto, E., Platt, D., Hugenholtz, P., Relman, D. A., & Quake, S. R.

(2007b). Dissecting biological ”dark matter” with single-cell genetic analysis

of rare and uncultivated tm7 microbes from the human mouth. Proc. Nat.

Acad. Sci., 104, 11889–11894.

[21] Mark, D., Haeberle, S., Roth, G., von Stetten, F., & Zengerle, R. (2010).

Microfluidic lab-on-a-chip platforms: requirements, characteristics and ap-

plications. Chem. Soc. Rev., 39, 1153–1182.

110

[22] Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits.

McGraw-Hill Higher Education.

[23] Minhass, W. H., Pop, P., & Madsen, J. (2011). System-level modeling and

synthesis of flow-based microfluidic biochips. In Proc. Int. Conf. Compil.,

Arch. and Syn. Embed. Sys. (pp. 225–234).

[24] Minhass, W. H., Pop, P., Madsen, J., & Blaga, F. S. (2012). Architectural

synthesis of flow-based microfluidic large-scale integration biochips. In Proc.

Int. Conf. Compil., Arch. and Syn. Embed. Sys. (pp. 181–190).

[25] Minhass, W. H., Pop, P., Madsen, J., & Ho, T.-Y. (2013). Control synthesis

for the flow-based microfluidic large-scale integration biochips. In Proc. Asia

and South Pacific Des. Autom. Conf. (pp. 205–212).

[26] National Human Genome Research Institute (2016). Cost per Genome.

http://www.genome.gov/sequencingcosts/.

[27] Osoegawa, K., Mammoser, A. G., Wu, C., Frengen, E., Zeng, C., Catanese,

J. J., & de Jong, P. J. (2001). A bacterial artificial chromosome library for

sequencing the complete human genome. Genome Research, 11, 483–496.

[28] Oxford Genomics Centre (2015). Single-cell genomics.

http://www.well.ox.ac.uk/ogc/single-cell-genomics.

[29] Ren, H., Srinivasan, V., & Fair, R. (2003). Design and testing of an interpo-

lating mixing architecture for electrowetting-based droplet-on-chip chemical

dilution. In Int. Conf. on Solid-State Sensors, Actuators and Microsystems

(pp. 619–622).

111

[30] Stanford Foundry (2016). Basic Design Rules.

http://web.stanford.edu/group/foundry.

[31] Su, F. & Chakrabarty, K. (2004). Architectural-level synthesis of digital

microfluidics-based biochips. In Proc. Int. Conf. Comput.-Aided Des. (pp.

223–228).

[32] Su, F. & Chakrabarty, K. (2005). Unified high-level synthesis and module

placement for defect-tolerant microfluidic biochips. In Proc. Design Autom.

Conf. (pp. 825–830).

[33] Su, F. & Chakrabarty, K. (2008). High-level synthesis of digital microfluidic

biochips. ACM J. Emerg. Technol. Comput. Syst., 3(4).

[34] Su, F., Chakrabarty, K., & Fair, R. B. (2006). Microfluidics-based biochips:

Technology issues, implementation platforms, and design-automation chal-

lenges. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 25(2),

211–223.

[35] Thorsen, T., Maerkl, S. J., & Quake, S. R. (2002). Microfluidic large-scale

integration. Science, 298(5593), 580–584.

[36] Tripp, S. & Grueber, M. (2011). Economic impact of the Human Genome

Project. Battelle.

[37] Tseng, K.-H., You, S.-C., Liou, J.-Y., & Ho, T.-Y. (2013a). A top-down syn-

thesis methodology for flow-based microfluidic biochips considering valve-

switching minimization. In Proc. Int. Symp. Phy. Des. (pp. 123–129).

112

[38] Tseng, T.-M., Chao, M. C. T., Lu, C.-P., & Lo, C.-H. (2009). Power-

switch routing for coarse-grain MTCMOS technologies. In Proc. Int. Conf.

Comput.-Aided Des. (pp. 39–46).

[39] Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2013b). Post-route

alleviation of dense meander segments in high-performance printed circuit

boards. In Proc. Int. Conf. Comput.-Aided Des. (pp. 713–720).

[40] Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2013c). Post-route

refinement for high-frequency pcbs considering meander segment alleviation.

In ACM Great Lakes Symposium on VLSI (pp. 323–324).

[41] Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2015a). ILP-based alle-

viation of dense meander segments with prioritized shifting and progressive

fixing in pcb routing. IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., 34(6), 1000–1013.

[42] Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2015b). Reliability-

aware synthesis for flow-based microfluidic biochips by dynamic-device map-

ping. In Proc. Design Autom. Conf. (pp. 141:1–141:6).

[43] Tseng, T.-M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2015c). Storage and

caching: Synthesis of flow-based microfluidic biochips. IEEE Des. Test.

Comput., 32(6), 69–75.

[44] Tseng, T.-M., Li, B., Li, M., Ho, T.-Y., & Schlichtmann, U. (2016a).

Reliability-aware synthesis with dynamic device mapping and fluid routing

for flow-based microfluidic biochips. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., 35(12), 1981–1994.

113

[45] Tseng, T.-M., Li, B., Yeh, C.-F., Jhan, H.-C., Tsai, Z.-M., Lin, M. P.-H.,

& Schlichtmann, U. (2016b). Novel CMOS RFIC layout generation with

concurrent device placement and fixed-length microstrip routing. In Proc.

Design Autom. Conf. (pp. 101:1–101:6).

[46] Tseng, T.-M., Li, B., Yeh, C.-F., Jhan, H.-C., Tsai, Z.-M., Lin, M. P.-H.,

& Schlichtmann, U. (accepted). An efficient two-phase ilp-based algorithm

for precise cmos rfic layout generation. IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst.

[47] Tseng, T.-M., Li, M., Li, B., Ho, T.-Y., & Schlichtmann, U. (2016c).

Columba: Co-layout synthesis for continuous-flow microfluidic biochips. In

Proc. Design Autom. Conf. (pp. 147:1–147:6).

[48] Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., & Quake, S. R. (2000).

Monolithic microfabricated valves and pumps by multilayer soft lithography.

Science, 288(5463), 113–116.

[49] Wang, J., Fan, H. C., Behr, B., & Quake, S. R. (2012). Genome-wide single-

cell analysis of recombination activity and de novo mutation rates in human

sperm. Cell, 150(2), 402–412.

[50] White, A. K., VanInsberghe, M., Petriv, O. I., Hamidi, M., Sikorski, D.,

Marra, M. A., Piret, J., Aparicio, S., & Hansen, C. L. (2011). High-

throughput microfluidic single-cell RT-qPCR. Proc. Natl. Acad. Sci.,

108(34), 13999–14004.

114

[51] Wu, A. R., Hiatt, J. B., Lu, R., Attema, J. L., Lobo, N. A., Weissman, I. L.,

Clarke, M. F., & Quake, S. R. (2009). Automated microfluidic chromatin

immunoprecipitation from 2,000 cells. Lab on a Chip, 9, 1365–1370.

[52] Wu, A. R., Kawahara, T. L., Rapicavoli, N. A., van Riggelen, J., Shroff,

E. H., Xu, L., Felsher, D. W., Chang, H. Y., & Quake, S. R. (2012). High

throughput automated chromatin immunoprecipitation as a platform for

drug screening and antibody validation. Lab on a Chip, 12, 2190–2198.

[53] Yao, H., Ho, T.-Y., & Cai, Y. (2015a). Pacor: Practical control-layer routing

flow with length-matching constraint for flow-based microfluidic biochips. In

Proc. Design Autom. Conf. (pp. 142:1–142:6).

[54] Yao, H., Wang, Q., Ru, Y., Ho, T.-Y., & Cai, Y. (2015b). Integrated flow-

control co-design methodology for flow-based microfluidic biochips. IEEE

Des. Test. Comput., 32(6), 60–68.

[55] Zhong, J. F., Chen, Y., Marcus, J. S., Scherer, A., Quake, S. R., Taylor,

C. R., & Weiner, L. P. (2008). A microfluidic processor for gene expression

profiling of single human embryonic stem cells. Lab on a Chip, 8(1), 68–74.

115

	Abstract
	Contents
	Dedication
	Introduction
	Background
	Structure of Continuous-flow Microfluidics
	Research Field: Front-End
	Research Field: Back End

	Current Status of the Design Automation Research for Continuous-Flow Microfluidics
	Pioneers: From Digital Circuits to Microfluidics
	Top-down Synthesis for Continuous-Flow Microfluidics
	Physical Design for Continuous-Flow Microfluidics
	Testing for Continuous-Flow Microfluidics

	Temporary Fluid Storage: Flow channel
	Mathematical model for channel caching and storage assignment
	Model reduction
	Storage assignment
	Experimental results

	Sieve Valve and Execution Limitations
	Mathematical model for washing behavior and specific execution limitations
	Experimental results

	Synthesis for Reconfigurable Microfluidics
	Valve-centered Architecture
	Dynamic Device Mapping
	In Situ On-chip Storages
	Routing-convenient Mapping
	Assurance of Fluid Paths to Chip Boundaries
	Valve-actuation-aware Routing
	Overall Algorithm
	Experimental results

	Columba: Co-Layout Synthesis for Continuous-Flow Microfluidic Biochips
	Global Layout Generation
	Handling Pin Constraints
	Port Module Restoration
	Refinement
	Experimental results

	Conclusion

