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Abstract—Multilayered valve-based continuous-flow microfluidic
biochips are a rapidly developing platform for delicate bio-applications.
Due to the high complexity of the biochip structure and the application
protocols, there is an increasing demand for design automation
approaches. Current research has enabled automated generation of
biochip physical designs, operation scheduling, and binding protocols,
which has demonstrated the potential for better resource utilization
and execution time reduction. However, the state-of-the-art high-level
synthesis methods are on operation- and device-level. They assume fluid
transportation paths to be always available but overlook the physical
layout of the control and flow channels. This mismatch leads to a gap
in the complete synthesis flow, and can result in performance drop,
waste of resources due to redundancy or even infeasible designs. This
work proposes to bridge this gap with a simulation-based approach,
which takes a biochip design and a high-level protocol as inputs, and
synthesizes channel-level pressurization protocols to support dynamic
construction of valid fluid transportation paths. Experimental results
show that the proposed method can efficiently validate and optimize the
flow paths for feasible designs and protocols, detect redundant resource
usage, and locate the conflicts for infeasible designs and protocols. It
opens up a new direction to improve the performance and the feasibility
of customized biochip synthesis.

I. INTRODUCTION

Multilayered continuous-flow microfluidic biochips [1] are a
promising lab-on-a-chip platform for high-throughput biological ap-
plications. Soft lithography technique is applied to bond multiple
patterned layers of elastomer, each of which consists of dedicated
channels that allow gas or fluids to pass through. The multilay-
ered structure enables the construction of active valves. A valve is
a composite functional unit consisting of channel segments from
different layers and a flexible membrane at the layer interface. A
two-layer polydimethylsiloxane (PDMS) push-up valve [2] is shown
in Figure 1, where a flow layer is on top of a control layer. When
gas or oil infuses the bottom control channel, the channel will be
pressurized and thus push the membrane upwards. Since the flow
channel segment has a rounded profile that perfectly fits the expanded
membrane, the channel will be sealed and the fluid movement in this
channel will be blocked [3].

With channels and valves, bioengineers have been able to build
delicate microfluidic systems on coin-sized chips. But as the com-
plexity of the application protocols and the integration scale of the
biochips increase, manually designing the chips becomes more and
more time-consuming and error-prone, which results in a strong
demand for automated software synthesis tools. Many design au-
tomation researchers put their efforts into analyzing and solving this
design problem. The ambition is to construct a completely automated
synthesis flow, which can transform a high-level abstraction of a
given application into a feasible and optimized chip design with an
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Figure 1: A two-layer polydimethylsiloxane (PDMS) push-up
valve [2]. When the control channel segment is pressurized, the flow
channel will be completely sealed by the expanded membrane.

explicit protocol for executing the application.
With a decade of effort, researchers have achieved significant

progress covering both high-level synthesis and physical design.
Specifically, up to 2019, there have been: high-level modeling
methods that optimize the resource utilization based on given ap-
plication protocols [4] [5]; place-and-route tools that synthesize
manufacturing-ready physical designs targeting applications of dif-
ferent scales [6] [7] [8], scheduling and fluid routing approaches
that map operations to given physical topologies [9] [10], and other
frameworks focusing on specific optimization criteria such as fluid
storage [11] [12] and control pin reduction [13] [14], etc.

Though the proposed approaches gradually piece together the
complete automatic synthesis flow, there are still some missing links
between the designs and the protocols.

First of all, the state-of-the-art high-level synthesis methods are on
operation- and device-level only. They assume fluid transportation
paths to be always available but overlook the interaction between
the control and flow channels. Specifically, flow path construction
is a dynamic process in multilayered biochips. To transport fluids
from one location to another, it is not sufficient to ensure the static
physical connection of flow channels, but also necessary to pressurize
certain control channels to temporally block the fluid movement
in unwanted directions. Though current approaches can synthesize
the operation scheduling and device binding results, they cannot
produce the explicit control channel pressurization sequences to
validate the dynamic construction of flow paths. Flow path validation
is indispensable because of two reasons:

• Reason 1: flow path construction must not only consider the
local channel structure, but should consider the whole chip.
As pointed out in [10], to move fluids from location a to
location b, three sub-paths need to be considered: a path from
a to b, a path from an inlet to a, and a path from b to an
outlet. Besides, as mentioned earlier, it is insufficient to ensure
the physical connection of the corresponding flow channels,
but also necessary to guarantee that all valves along the paths
are properly pressurized and depressurized. Manually deriving
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Figure 2: (a) A manually derived valve actuation protocol from [13],
which intends to form a flow path from i to v2. (b) A fabricated
chip [7] where valves A and B are connected to share the pressure.

the pressurization sequences can be error-prone. An example
from [13] is shown in Figure 2(a), which intends to transport
fluids from an inlet i to the bottom half-ring between valves
v1 and v2, but mistakenly sets valves right to the dash-line to
don’t care status, indicating that these valves are irrelevant and
can be either pressurized or not. However, if v3 and v4 are both
pressurized and thus ‘closed’, there will be no sub-path from
v2 to an outlet. Since the initial status of a channel is not a
vacuum but filled with air, it is hardly possible1 to form the
expected pattern of fluid flow.

• Reason 2: different sub-paths may conflict with one another due
to pressure-sharing valves. In multilayered biochips, valves are
connected to external pressure sources via control pins, which
are punch holes on the chip that occupy a large area [16].
To reduce the control pin usage, it is a common approach
to connect multiple valves sequentially with the same control
channel to share the same control pin. In this case, pressurizing
one control channel will lead to the pressurization of all valves
along the channel, which may result in unexpected blockage
of flow paths. For example, Figure 2(b) shows the photo of
a biochip [7] consisting of two ring-shaped mixers. The blue
dash line demonstrates a path for fluid transportation from an
inlet to the upper mixer. To prevent the bottom mixer from
contamination, an intuitive approach is to pressurize valve A.
However, since valve A and valve B are sequentially connected
by a green control channel, pressurizing valve A leads to
the pressurization of valve B, which results in the unwanted
blockage of the sub-path from the target ring to an outlet.

Another mismatch between the design and the protocol results
from fluid-multiplexing operations. Fluid-multiplexing refers to fluid
transportation from the same source to multiple destinations, which is
common in high-throughput bio-applications. Though fluid multiplex-
ing is typically specified as a single operation in current high-level
protocols, it may require a dynamic change of the flow path if the
flow channels connected to the different destinations are of different
lengths2. For example, Figure 3(a) shows a photo of a biochip [18]

1Since PDMS is gas-permeable [15], given large-enough pressure from i,
the fluids may slowly push the air out of the channel, but the transportation
time will be significantly prolonged and the fluids may be mixed with air
bubbles.

2Because of the area confinement, current physical synthesis methods
usually trade off the length-matching feature for routability. Since the ap-
plication execution time is dominated by biological phenomena but not fluid
transportation, this trade-off is considered acceptable [17].
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Figure 3: (a) A biochip that supports fluid-multiplexing from M1
to M2, M3, M4 and M5. (b) Part of a biochip design where the
functionality of the valve at the channel branch next to the mixer
overlaps with the right separation valve of the mixer.

containing five ring-shaped mixers that support fluid-multiplexing
from M1 to M2, M3, M4, and M5. When the transportation from
M1 to its nearest mixer M3 finishes, the transportation to the other
target mixers will still be in progress. In this case, the control channel
pressurization protocol needs to be updated to block the fluid motion
in M3 without disturbing other sub-paths. Neglecting this feature can
lead to inaccuracy of the scheduling results, difficulty in the execution
process, and most importantly, incorrect control layer design that fails
to support the target application.

Last but not least, due to the absence of channel-level protocols,
current physical synthesis methods cannot precisely estimate the
usage of control resources, which leads to redundancy in the design.
For example, Figure 3(b) shows a design synthesized by a state-of-
the-art tool [8], which places a valve at each branch of the flow
channels to control fluid transportation in all directions. However,
the functionality of the valve at the flow channel branch close to
the mixer completely overlaps with the right separation valve of the
mixer, and thus can be removed without hurting the performance of
the chip. Removing redundant control components including valves,
channels, and pins means cleaner control layer design and chip size
reduction. Besides, since control channels are much thinner than flow
channels [16], they are more vulnerable to damages and are thus a
major source of chip defects [19]. Thus, avoiding redundancy also
contributes to the robustness of the chip.

In this work, we propose to bridge the gap between current
high-level and physical synthesis methods with a simulation-based
approach named VOM. It takes a biochip design and a high-level
protocol as inputs, and then synthesizes and optimizes channel-level
pressurization protocols to support dynamic construction of valid flow
paths. The contribution of VOM includes:

• It is the first approach that synthesizes channel-level protocols,
which provides a basis for validating the dynamic construction
of flow paths.

• It proposes an event-driven mechanism to automatically update
the channel-level protocol to support fluid-multiplexing.

• It optimizes the channel-level protocol based on adjustable
criteria including execution time and resource usage.

• It detects the design redundancy and locates the conflicts for
incompatible designs and protocols, which opens up a new
direction to improve the performance and the feasibility of
customized biochip synthesis.
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Figure 4: System diagram of VOM

II. VOM BUILDING BLOCKS

A. An Overview of VOM

In this section, we will briefly introduce the basic building blocks
of VOM to provide a quick overview of our algorithmic flow. The
system diagram is shown in Figure 4.

1) Inputs

VOM takes a design and a high-level (operation- and device-level)
protocol as input.

• The design specifies the physical features of a given multilayered
biochip. VOM interprets the flow layer structure into a weighted
graph G=(V,E) consisting of vertices V and undirected edges
E. Each vertex v∈V represents a ’landmark’ on the chip, which
can be an inlet, an outlet, a valve, or a flow channel intersec-
tion. Each edge e∈V represents a flow channel between the
landmarks, with weight coefficients we, he, and le representing
the dimensions of this flow channel. Besides, the design also
specifies the control channel connection among valves.

• The high-level protocol specifies a sequence of fluid transporta-
tion operations. For each operation, it describes the target flow
path as a set of inlet vertices that initiate the fluid movement, a
set of destination vertices at which fluid movement ends, and a
set of vertices that should be excluded from the flow path.

2) Flow Layer Compatibility Check

Neglecting the control channel connections, VOM first performs
a quick check to determine whether the target flow paths can be
supported by the flow layer design. If the check fails, VOM outputs a
warning message indicating that the flow-layer design is incompatible
with the protocol. Otherwise, VOM proceeds to the next step.

3) Control Sequence Optimization

In this step, VOM restores the channel connections among valves
based on the original control-layer design, and looks for all candidate
control channel pressurization protocols that can construct the target
flow path. If the construction fails, VOM outputs a warning message
indicating that the control-layer design is incompatible with the pro-
tocol, i.e. some control channel connections are improper. Otherwise,
VOM carries out an optimization process based on user-defined
criteria to finalize a channel-level protocol from all candidates.

4) Simulation

Based on the graph G and the channel-level protocol, VOM
simulates the application execution process in an event-driven man-
ner, which allows it to predict the demand for protocol updates
in fluid-multiplexing operations. If such demand is detected, VOM
automatically updates the high-level protocol and turns back to
synthesize the channel-level protocol that supports the update.

5) Output

If the design and the high-level protocol are compatible, VOM
outputs three types of results: a channel-level protocol where the
dynamic formation of all flow paths is validated; a schedule for each
fluid transportation operation; and a report on resource usage in the
control layer.

B. Flow Path Validation

Before diving into the detailed synthesis flow of VOM, we first
introduce our flow path validation algorithm, which is an important
module frequently applied in most of the synthesis steps.

We perform flow path validation based on a graph G= (V,E)

that models the physical structure of a chip, and a set of vertices
Vblock⊆V that specifies the initial blockage in the chip.

As the first step, we assign an availability for each vertex v∈V
and each edge e∈E to indicate whether the vertex/edge can be used
to form a valid flow path. All edges are initialized as available by
default, and for each vertex v∈V , if v∈Vblock, it is initialized as
unavailable, otherwise it is initialized as available.

We then propose an algorithm to recursively modify the availability
of all vertices and edges to locate the valid flow paths. To guide the
modification, we formulate the following rules:

1) If an edge consists of an unavailable vertex, the edge is
unavailable.

2) If a vertex belongs to an unavailable edge and the vertex
does not represent a flow channel intersection, the vertex is
unavailable.

3) If a vertex belongs to only one available edge and the vertex
is not an in-/outlet, the vertex is unavailable.

4) If a vertex is not reachable from the inlet or it cannot reach the
outlet, the vertex is unavailable.

Figure 5 demonstrates our modification process with an example,
where the design consists of 14 vertices, among which vertices 8 and
12 are specified as initially unavailable, as shown in Figure 5(a).

The first modification rule is based on the fact that the blocked
end of a flow channel can neither initiate nor receive a fluid flow.
As a result, we specify the edges connected to vertices 8 and 12 as
unavailable, as shown in Figure 5(b).

The second modification rule indicates that a chip component
without valid flow channel connection is invalid. Thus, as an endpoint
of the unavailable edge (12,14), vertex 14 is specified as unavailable,
as shown in Figure 5(c).

The third modification rule follows the fact that an intermediate
point in the flow path must be connected to at least two unblocked
flow channels. Since vertex 10 only has one valid flow channel
connection and it is neither an inlet nor an outlet, it is specified
as unavailable, as shown in Figure 5(d).

The fourth modification rule indicates that a valid flow path must
include an inlet and an outlet to ensure proper pressure drop. As a
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Figure 5: An example of the recursive modification procedure for locating all valid flow paths. In-/outlets are denoted as circles and valves
are denoted as rounded rectangles.

result, vertices 2, 4, 5, and 6 are specified as unavailable, as shown
in Figure 5(e).

By recursively applying the modification rules until no more vertex
or edge can be specified as unavailable, we can locate a valid flow
path, as shown in Figure 5(f).

III. VOM SYNTHESIS FLOW

Based on the system diagram and the flow path validation ap-
proach, this section gives a detailed description of each VOM
synthesis step.

A. Flow Layer Compatibility Check

The first step of VOM is to quickly check whether a target flow
path can be supported by the given flow-layer design.

A target flow path is specified in the input protocol as a set of
inlet vertices Vinlet, one or multiple destination vertices Vtarget, and a
set of vertices that should be excluded from the flow path (to avoid
contamination) Vexclude.

VOM carries out the check with flow path validation.

1) Specify Vblock

To find out whether fluids can arrive at the destination vertices
Vtarget without contaminating Vexclude, we initially add all vertices in
Vexclude to Vblock to indicate that these vertices are not available for
forming the flow path. Besides, we also add inlet vertices that do
not belong to the current flow path to Vblock to prevent them from
contamination.

However, not all vertices in Vblock have the risk of contamination.
Specifically, a flow path consists of two sub-paths: a sub-path from
an inlet to the destination, and a sub-path from the destination to
an outlet. Since the fluid transportation will be stopped when fluids
arrive at their destination, the latter sub-path will not be contaminated.
Adding contamination-free vertices into Vblock leads to two issues:

1) It may hurt the feasibility of a valid flow path. Take the chip
shown in Figure 5(a) as an example. For a given protocol

Vinlet ={1}, Vtarget ={7} and Vexclude ={8,11,12}, which aims
to transport fluids from inlet 1 to the flow channel between 3

and 7 while keeping all other channels contamination-free, it
is safe to specify Vexclude as empty since all vertices except for
1, 3 and 7 are in the contamination-free sub-path. However, if
we add the whole set of Vexclude to Vblock, there will be no valid
flow path left in the design, since vertex 7 cannot reach any
outlet.

2) It may prolong the time needed for the transportation. Still us-
ing the above example, if we leave vertex 11 available and add
8 and 12 to Vblock, though a valid flow path can be constructed
as shown in Figure 5(f), the hydraulic resistance3 of the flow
path will be enlarged compared to keeping Vblock empty. Thus,
fluids will take more time to reach their destination.

VOM avoids these issues by transforming G into a directed graph,
based on which we can derive whether a vertex is in a contamination-
free sub-path. If a vertex in Vblock has no risk of contamination, we
remove it from Vblock.

2) Check Compatibility

With the design graph G and the set Vblock, VOM performs flow
path validation to locate all available vertices and edges. If for all v∈
Vinlet∪Vtarget, v remains available after the validation, we can conclude
that the flow-layer structure is capable of supporting the target flow
path, and VOM proceeds to the next step. Otherwise, VOM outputs
a warning message.

B. Control Sequence Optimization

If the input passes the flow-layer compatibility check, VOM first
collects all control channel pressurization protocols that can support
the target flow paths, and then decides one final protocol based on
user-defined optimization criteria.

3A more detailed discussion about hydraulic resistance will be introduced
in Section 3.2



1) Collect Control Channel Pressurization Options

VOM builds a search tree to efficiently traverse all control channel
pressurization options. The algorithm is inspired by the idea of branch
and cut for solving integer linear programming problems [20].

Except for a virtual root (level-0), each node in the search tree
represents a control channel pressurization option, where a level-1
node is a set of cardinality 1 representing an option of pressurizing
one control channel, a level-2 node is a set of cardinality 2 repre-
senting an option of pressurizing two control channels, etc. Thus, for
a design that consists of n control channels, there will be n level-1
nodes in the tree.

We then perform a breadth-first search to traverse the tree. For
each node, we perform flow path validation with Vblock defined as
all valve vertices contained in the control channels of the node, i.e.,
we assume all control channels in this option to be pressurized and
look for the resulting flow paths. Based on the validation results, we
assign the node to one of three different classes:

1) The resulting paths do not contain all vertices in Vinlet and Vtarget.
In this case, we classify the node as fail, which represents an
invalid option.

2) The resulting paths contain all vertices in Vinlet and Vtarget, and
do not contain any vertex in Vexclude. In this case, we classify
the node as success, which represents a valid option.

3) The resulting paths contain all vertices in Vinlet and Vtarget, but
they also contain some of the vertices in Vexclude. In this case,
we classify the node as candidate.

After traversing all nodes on the same level, for each node that is
classified as fail or success, we cut all nodes that represent a superset
of this node from the tree. Because if a node is classified as fail, it
means that this option leads to unwanted blockage of the flow paths.
Thus, options containing the same set of control channels will also
lead to the same unwanted blockage. On the other hand, if a node is
classified as success, it means that this option is enough to support
the protocol. Thus, it is also unnecessary to include additional control
channels.

After traversing all nodes in the tree, we collect the nodes classified
as success as potential control channel pressurization options.

Figure 6 shows an illustration of our synthesis method for a design
consisting of four control channels. We first build a search tree, and
then perform flow path validation for each of the level-1 nodes. Based
on the validation results, {c1} is classified as success and {c2} is
classified as fail. Thus, we cut all the supersets of {c1} or {c2} from
the tree, which leaves {c3,c4} as the only level-2 node. After another
flow path validation process, {c3,c4} is classified as success. Thus,
we collect it together with {c1} as the candidates.

2) Optimization Criteria

VOM provides two optimization criteria for selecting a control
channel pressurization protocol from all candidates. A user of VOM
can choose one of the criteria according to his/her demands.

a) Resource-Oriented Optimization

The first criterion is to execute the application with a minimized
number of control channels. Control channels that are never pressur-
ized during the whole application can be considered as redundant and
thus removed from the chip. Since the removal of a control channel
also results in the removal of all valves it contains and the control pin
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Figure 6: Search and collect all valid control channel pressurization
options

it is connected to, by minimizing the number of pressurized control
channels, we minimize the control-layer redundancy.

We propose an integer-linear-programming method to solve this
optimization problem. Specifically, we model the problem as follows:

Input:
— A set C of natural numbers representing the indices of all

control channels in a design.
— A sequence O=o1,··· ,on representing all fluid transportation

operations in the application.
— A function f that maps each operation o∈O to a set of control

channel pressurization options {C1,··· ,Cm} where C1,··· ,Cm⊆C.
Output:
— A set M⊆C representing the control channels that have been

pressurized in the application. In other words, M satisfies:

∀o∈O ∃M ′⊆M : M ′∈f(o)

Optimization objective:
— Minimize the cardinality of M .

To build the model, we introduce a binary variable bci for each ci in
C to indicate whether the channel is pressurized in the application.
Also, we introduce a binary variable boj ,Ck to represent whether
a control channel pressurization option Ck ∈ f(oj) is selected to
execute operation oj .

We introduce the following constraint for each oj ∈O to model that
exactly one control channel pressurization option must be chosen for
each operation: ∑

Ck∈f(oj)

boj ,Ck =1. (1)

We introduce the following constraints to model that if an option
Ck∈f(oj) is chosen to execute an operation oj , all control channels



cτ ∈Ck must be identified as pressurized, i.e. boj ,Ck = 1 implies
bcτ =1:

∀oj ∈O ∀Ck∈f(o) ∀cτ ∈Ck : boj ,Ck≤bcτ . (2)

Thus, the model can be formulated as:

Minimize:
∑
ci∈C

bci .

Subject to: (1)(2).

Based on the optimization results, for each operation oj , we select
the control channel pressurization option Ck with boj ,Ck =1.

b) Transportation-Time-Oriented Optimization

The second criterion is to execute the application with min-
imized fluid transportation time. Fluid flows in micro- and nano-
environments are considered, as a first approximation, to be viscous,
incompressible, and generally laminar [21], which enables the predic-
tion of fluid motion based on relatively simple calculations. Specifi-
cally, the hydraulic behavior of pressure-driven flow is governed by
the Hagen-Poiseuille equation, which corresponds to Ohm’s law in
electric circuit analysis, where the pressure drop is analogous to the
voltage drop, the volumetric flow rate to the current, and the hydraulic
resistance to the electric resistance [22]. Thus, if we assume the input
pressure to be a constant value, to achieve the shortest transportation
time with a maximized flow rate, we need to select the control channel
pressurization protocol that forms a path with the smallest hydraulic
resistance.

Our optimization follows the following model of fluid dynamics
in micro- and nano-environments [21]:

Given a pressure drop ∆p and the hydraulic resistance RH of a
fluid-filled channel, the flow rate Q ( volume

time ) is calculated as

Q=
∆p

RH
. (3)

For a rectangular channel of height h and width w in multi-
layered continuous-flow microfluidic biochips, its hydraulic resistance
is approximated as:

RH =
12µL

h3w
, (4)

where µ is the viscosity of the to-be-filled fluids and L is the length
of the channels.

Analogous to an electric circuit, for n channels with individual
hydraulic resistance R1,··· ,Rn that are placed in series, the effective
resistance Rs is calculated as:

Rs=R1+···+Rn, (5)

and if those channels are placed in parallel, the effective resistance
Rp is calculated as:

Rp=
1

1
R1

+···+ 1
Rn

. (6)

For each control channel pressurization option, we perform flow
path validation to compute its resulting flow path and calculate its
hydraulic resistance. Specifically, we build hyper-edges for edges that
are connected in parallel or in series, where the resistance of a hyper-
edge is calculated after the resistance of all its edge-segments has
been calculated. To note is that a hyper-edge can be built upon other
hyper-edges to represent a multi-level fluid-multiplexing structure.
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Figure 7: An example of the flow rate distribution model.

After the calculation, we select the control channel pressurization
protocol that constructs a flow path with the smallest hydraulic
resistance.

C. Simulation: Event-driven Protocol Update

With the optimized channel-level protocol, VOM performs simu-
lation to automatically update and synthesize the protocol for fluid-
multiplexing operations.

The simulation starts from the first operation in the input protocol,
for which we set Vblock as the set of all valve vertices that are
pressurized according to the optimized channel-level protocol, and
perform flow path validation.

With the validated graph, we build a hierarchical model of the
flow path. For example, Figure 7 shows a flow path 1→6 consisting
of three sequentially connected sub-paths 1→2, 2→5, and 5→6,
among which the sub-path 2→ 5 again consists of two parallel
sub-paths. With the Hagen-Poiseuille equation introduced in Sec-
tion III-B2, we can calculate the hydraulic resistance of the sub-paths
based on the hydraulic resistance of the underlying edges, and thus
derive the flow rate distribution among the sub-paths. Specifically, in
the example shown in Figure 7, the upper sub-path 2→3→4→5

has a smaller resistance than the bottom parallel sub-path 2→5. As
a result, the upper sub-path will inherit 60% of volumetric flow rate
from its predecessor path, while the bottom sub-path will only inherit
40% of the volumetric flow rate from the same predecessor path. And
since the sub-path 2→3→4→5 contains a pair of parallel edges
(3,4) with balanced hydraulic resistance, its volumetric flow rate is
further divided into two parts. Thus, suppose that the input flow rate
is 100µm3/s, the volumetric flow rate at each of the parallel edges
(3,4) will be calculated as 100µm3/s∗60%∗50%=30µm3/s.

After computing the flow rate distribution, we can simulate the
fluid status in each available edge at a given time applying a modified
list-scheduling algorithm [23]. We first calculate the total volume of
input fluids based on time and flow rate, and then try to process
the edges sequentially based on the flow path model. Specifically, an
edge can only be processed if at least one of its predecessor edges
is filled with fluids.

After processing each edge, the simulation takes a pause and
generates an event signal to tell which vertex vr has just been reached
by the fluids. Based on this signal, we distinguish among three options
to continue the synthesis:

1) If vr is not a destination vertex, the simulation continues
without changing any configuration.

2) If vr is a destination vertex, and all the destination vertices
have been reached, we stop the simulation and proceed to the
next operation.

3) If vr is a destination vertex, but there are other destination
vertices that have not been reached, we stop the simulation
and update the high-level protocol by moving vr from Vtarget to
Vexclude. After that, we feed the updated protocol to flow layer



TABLE I: Input features and synthesis results

Id |L| |V | |C| |O| F-Mux Upd. Cremoval Compa. Time

1 24 16 13 5 0 0 2 Yes 0.018s

2 48 34 12
6 0 0 0 Yes 0.645s

2 2 4 3 Yes 0.409s

3 62 38
15 5 1 1 NA No 5.022s

16 5 1 1 2 Yes 13.722s

|L|: the number of landmarks in the design; |V |: the number of valves
in the design; |C|: the number of control channels in the design; |O|:
the number of operations in the input protocol; F-Mux: the number of
fluid multiplexing operations in the input protocol; Upd.: the number of
automatic protocol updates that VOM performs; |Cremoval|: the number
of redundant control channels that can be removed from the design;
Compa.: whether the design is compatible with the high-level protocol;
Time: program run time.

compatibility check to begin the synthesis of the corresponding
channel-level protocol.

Whenever a new simulation process begins, the fluid status simulated
by the previous process will be inherited and the event-driven protocol
update mechanism will be repeated.

IV. EXPERIMENTAL RESULTS

We implemented VOM in C++, and tested its performance with
three multilayered continuous-flow biochip designs.
• The first design consists of a rectangular chamber and a ring-

shaped mixer, as shown in Figure 8. Except for four sequentially
connected pumping valves, all valves in this design are directly
connected to control pins and thus do not share the pressure
with the others.

• The second design consists of three ring-shaped mixers, as
shown in Figure 9, where valves of similar functionality but
in different mixers are sequentially connected to share the same
control pins.

• The third design consists of two rectangular chambers and two
ring-shaped mixers. It is an application-specific design proposed
in [7] and shown in Figure 2(b). It also applies an aggressive
pressure-sharing strategy to reduce the number of control pins
on the chip, which results in a relatively larger number of
sequentially connected valves.

Table I shows the input features and the synthesis results. In the
following we analyze the results in detail:

For the first design, we tested five fluid transportation operations
from different inlets to the chamber and to the mixer. VOM validates
the flow paths for all five operations with channel-level pressurization
protocols, based on which it detects two redundant control channels
that can be safely removed from the design, as shown in Figure 8.

For the second design, we tested two input protocols:
• The first protocol consists of six fluid transportation operations,

each of which starts from an inlet and ends at a half-ring-shaped
channel inside a mixer. VOM validates the flow paths for all six
operations with channel-level pressurization protocols, and the
synthesis results show no redundancy.

• The second protocol consists of two fluid-multiplexing opera-
tions, and thus is more in accordance with the intention of the
design (since the design consists of three parallel mixers). For
each fluid-multiplexing operation, VOM automatically updates
the control channel pressurization protocols twice based on the
simulation results. Figure 9 illustrates the updates for the first
fluid-multiplexing operation, which aims to transport fluids from

Figure 8: A design consisting of a chamber and a mixer. Flow
channels are in light blue and control channels are in green. The
two control channels in red are redundant and can be safely removed
from the design.

an inlet to three half-ring-shaped mixer-segments simultane-
ously. At the beginning of the operation, two control channels
are pressurized to form the flow paths without contaminating
the other halves of the mixers, as shown in Figure 9(a). When
the channel segment in the nearest mixer is filled, VOM detects
that there are still two other sub-paths in progress, as shown
in Figure 9(b). Thus, it pressurizes another control channel to
stop the fluid transportation in the finished sub-path without
disturbing the others, as shown in Figure 9(c). Similarly, after
fluids reach the middle mixer, VOM pressurizes another control
channel to ensure the longest sub-path, as shown in Figure 9(d).
Besides, by applying the fluid-multiplexing protocols, three
control channels can safely be removed.

The third design is application-specific. Thus, we generated an
input protocol consisting of five fluid transportation operations based
on the bio-application [24]. The protocol includes a fluid-multiplexing
operation, for which VOM updates the channel-level protocol once.
When VOM tries to validate the flow path for the third operation from
an inlet to one of the mixers, it identifies that there is no control
channel pressurization option that can form the required path, due
to two sequentially connected valves in two conflicting sub-paths.
Thus, we added the fifth test case assuming one additional control
channel is added to pressurize the conflicting valves separately. In
this case, VOM validates the flow paths for all five operations
with channel-level pressurization protocols and detects two redundant
control channels.

For all three designs, VOM synthesizes the channel-level protocols
within seconds. The program run time increases with the scale of the
design and the protocol.

V. CONCLUSION

Design automation for multilayered continuous-flow microfluidic
biochips has made significant progress in the last decade. However,
there is a mismatch between the state-of-the-art high-level synthesis
and physical design approaches, which hinders the development of
a complete automatic synthesis flow. This work proposes VOM
to build this missing link with flow path validation and control
sequence optimization. VOM takes a biochip design and a high-level
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Figure 9: Automatic update of channel-level pressurization protocol for a fluid-multiplexing operation. Fluids are in blue and pressurized
control channels are in dark green. The numbers over the channels denote the percentage of the volume of the corresponding flow channel
segment between two landmarks (valves in this case) that has been occupied by fluids.

protocol as inputs, and then synthesizes and optimizes channel-level
pressurization protocols to validate the dynamic formation of required
fluid transportation paths. For fluid-multiplexing operations, VOM
automatically updates the high-level protocol, and synthesizes the
corresponding channel-level protocol based on an event-driven simu-
lation approach. We demonstrate the efficiency and the effectiveness
of VOM with multiple biochip designs.

In general, VOM can efficiently generate channel-level pressur-
ization sequences for feasible designs and protocols, and locate the
conflicts for infeasible designs and protocols. It can also detect
redundant resource usage of the input design, which opens up a
new direction to improve the performance and the feasibility of
customized biochips.
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